Closed-world tracking of multiple interacting targets for indoor-sports applications

Computer Vision and Image Understanding, 2009
In this paper we present an efficient algorithm for tracking multiple players during indoor sports matches. A sports match can be considered as a semi-controlled environment for which a set of closed-world assumptions regarding the visual as well as the dynamical properties of the players and the court can be derived. These assumptions are then used in the context of particle filtering to arrive at a computationally fast, closed-world, multi-player tracker. The proposed tracker is based on multiple, single-player trackers, which are combined using a closed-world assumption about the interactions among players. With regard to the visual properties, the robustness of the tracker is achieved by deriving a novel sports-domain-specific likelihood function and employing a novel background-elimination scheme. The restrictions on the player's dynamics are enforced by employing a novel form of local smoothing. This smoothing renders the tracking more robust and reduces the computational complexity of the tracker. We evaluated the proposed closed-world, multi-player tracker on a challenging data set. In comparison with several similar trackers that did not utilize all of the closed-world assumptions, the proposed tracker produced better estimates of position and prediction as well as reducing the number of failures.


<a href="">Closed-world tracking of multiple interacting targets for indoor-sports applications</a>