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Abstract

In this paper we propose a Gaussian-kernel-based online kernel density estimation which can be used for
applications of online probability density estimation and online learning. Our approach generates a Gaussian
mixture model of the observed data and allows online adaptation from positive examples as well as from the
negative examples. The adaptation from the negative examples is realized by a novel concept of unlearning
in mixture models. Low complexity of the mixtures is maintained through a novel compression algorithm.
In contrast to the existing approaches, our approach does not require fine-tuning parameters for a specific
application, we do not assume specific forms of the target distributions and temporal constraints are not
assumed on the observed data. The strength of the proposed approach is demonstrated with examples of
online estimation of complex distributions, an example of unlearning, and with an interactive learning of
basic visual concepts.
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1. Introduction

The process of learning may be viewed as a task of generating models from a corpus of data. Interactive
acquisition of such models is one of the fundamental tasks in many rapidly emerging research areas. One
example is interactive search engines for browsing large-scale data bases [1], where a system has to chose an
optimal strategy to build efficient models of the query while minimizing the required communication with the
user. Interactive and online learning is also becoming important in cognitive computer vision and cognitive
robotics (eg., [2, 3]), where the primary goal is to study and develop cognitive agents – systems which could
continually learn and interact within natural environments. Since most of the real-world environments are
ever-changing, and all the information which they provide cannot be available (nor processed) at once, an
agent or a system interacting within such an environment has to fulfill some general requirements in the way
it builds the models of its environment: (i) The learning algorithm should be able to create and update the
models as new data arrives. (ii) The models should be updated without explicitly requiring access to the old
data. (iii) The computational effort needed for a single update should not depend on the amount of data
observed sofar. (iv) The models should be compact and should not grow significantly with the number of
training instances. Furthermore, in real-life scenarios, an erroneus information will typically get incorporated
into the models. In such situations, the models should allow for error-recovery without the need of complete
relearning. This is especially important in the user-agent interaction settings, in which the user can provide
not only positive but negative examples as well to improve the agents knowledge about its environment.
Therefore, another requirement (v) is that the models should support the process of unlearning, i.e., they
have to allow online adaptation using the negative examples as well.
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The process of online learning should thus create, extend, update, delete, and modify models of the
perceived data in a continuous manner, while still keeping the representations compact and efficient. Various
models and methods for their extraction have been proposed in different contexts and tasks (eg., [4, 5, 6, 7, 8]).
In this paper we explore modelling data by probability density functions (pdf) based on Kernel Density
Estimates (KDE). In particular, we focus on Gaussian mixture models (GMM), which are known to be a
powerful tool in approximating distributions even when their form is far from Gaussian [9]. We demonstrate
the results of our approaches on examples of online approximation of probability density functions and on
examples of interactive visual learning in cognitive agents.

1.1. Related work

Traditionally, methods for density estimation are based on Parzen estimators [9, 10, 11, 12], expectation
maximization (EM) algorithm [13, 14, 15] or variational estimation [16, 17], to name a few. However, their
extention to online estimation of mixture models is nontrivial, since they assume all the data is available
in advance. Indeed, a major issue in an online estimation of mixture models is that we do not have an
access to the previously observed data to re-estimate the model’s parameters when the new data arrives.
Instead, the model itself has to serve as a compact representation of the data. While the model has to
generalize well the already observed data, at the same time it has to be complex enough to allow efficient
adaptation to the new data. Some researchers therefore impose temporal constraints on the incoming data
to allow online estimation of the mixture models. Song and Wang [18], for example, assume that data
comes in blocks. They use an EM with model selection to estimate the mixture model for the block of data
and use statistical tests to merge components with the model learnt from the previously observed data.
Arandjelović and Cippola [19] proposed an online extension of EM with split and merge rules, which allows
adding a single datum at a time, rather than blocks. They make a strong assumption, however, that the
distances between consecutive data points are sufficiently small, which prohibits application of this approach
in general situations. Deleclerq and Piater [20] assign a Gaussian with a predefined covariance to the newly
observed data and merge it with the mixture model, which describes the previously observed data. To ensure
that the resulting mixture model contains enough information to adapt to the new data, each component is
modelled by another mixture model. Szewczyk [21] applies a Dirichlet and Gamma density priors to assign
new components to the mixture model in light of the incoming data and then merges the components in
the mixture which are sufficiently close. One drawback of this approach, however, is that the parameters of
the prior need to be specified for a given problem. A conceptually different approach was proposed by Han
et al. [22], which aims to detect only the modes of the distribution and approximate each mode by a single
Gaussian. While the approach produces good models when the modes of the distribution are sufficiently
Gaussian and well separated, it fails to properly estimate the distribution in cases when the modes are
non-Gaussian, e.g., in skewed or uniform distributions.

1.2. Our Approach

In contrast to the above approaches, we propose in this paper a method for online estimation of mixture
models which does not require fine-tuning the parameters for a specific application, we do not assume a
very specific forms of the target pdfs, temporal constraints are not assumed on the observed data and the
proposed methods allow for unlearning as well. Our contributions are threefold. The first contribution is
a new approach to incremental Gaussian mixture models which allows online estimation of the probability
density functions. This is achieved by deriving a novel method for online kernel density estimation. The
second contribution is a method that enables unlearning parts of the learned mixture model, which allows
for a more versatile learning. The third contribution is a method for maintaining a low complexity of the
estimated mixture models.

The remainder of the paper is structured as follows. In Section 2.1 we present the online mixture model,
the method for unlearning is introduced in Section 2.2 and the method for complexity reduction is proposed
in Sections 2.3 and 2.4. In Section 3 we present experimental results from online approximation of complex
distributions, model refinement by unlearning, and apply the proposed methodology to the problem of online
interactive learning of simple visual concepts. Conclusions are drawn in Section 4.
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2. Online Estimation of Mixture Models

Throughout this paper we will refer to a class of kernel density estimates based on Gaussian kernels, which
are commonly known as the Gaussian mixture models. Formally, we define a one dimensional M -component
Gaussian mixture model as

pmix(x) =
M
∑

j=1

wjKhj
(x− xj), (1)

where wj is the weight of the j-th component and Kσ(x− µ) is a Gaussian kernel

Kσ(z) = (2πσ2)−
1
2 exp(−1

2
z2/σ2), (2)

centered at mean µ with standard deviation σ; note that σ is also known as the bandwidth of the Gaussian
kernel.

2.1. Online kernel density estimation

Suppose that we have observed a set of nt samples {xi}i=1:nt
up to some time-step t. The problem of

modelling samples by a probability density function can be posed as a problem of kernel density estima-
tion [9]. In particular, if all of the samples are observed at once, then we seek a kernel density estimate with
kernels placed at locations xi with equal bandwidths ht

p̂t(x;ht) =
1

nt

nt
∑

i=1

Kht
(x− xi), (3)

which is as close as possible to the underlying distribution that generated the samples. A classical measure
used to define closeness of the estimator p̂t(x;ht) to the underlying distribution p(x) is the mean integrated

squared error (MISE)

MISE = E[p̂t(x;ht)− p(x)]2. (4)

Applying a Taylor expansion, assuming a large sample-set and noting that the kernels in p̂t(x;ht) are
Gaussians ([9], p.19), we can write the asymptotic MISE (AMISE) between p̂t(x;ht) and p(x) as

AMISE =
1

2
√

π
(htnt)

−1 +
1

4
h4

t R(p′′(x)), (5)

where p′′(x) is the second derivative of p(x) and R(p′′(x)) =
∫

p′′(x)2dx. Minimizing AMISE w.r.t. band-
width ht gives AMISE-optimal bandwidth

htAMISE = [
1

2
√

πR(p′′(x))nt
]
1
5 . (6)

Note that (6) cannot be calculated exactly since it depends on the second derivative of p(x), and p(x)
is exactly the unknown distribution we are trying to approximate. Several approaches to approximating
R(p′′(x)) have been proposed in the literature (see e.g. [9]), however these require access to all the observed
samples, which is in contrast to the online learning where we wish to discard previous samples and retain
only their compact representations. Our setting is depicted in Figure 1: We start from a known pdf p̂t−1(x)
from the previous time-step and in the current time-step observe a sample xt (Figure 1a). A Gaussian kernel
corresponding to xt is calculated and used to update p̂t−1(x) to yield a new pdf p̂t(x) (Figure 1b). Formally
this means that the current estimate p̂t(x) is obtained as

p̂t(x) = (1− 1

nt
)p̂t−1(x) +

1

nt
Kht

(x− xt), (7)
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and the online kernel density estimation boils down to estimating the bandwidth ht of the Gaussian kernel
for the currently observed sample xt. We can rewrite (3) by separating the kernel corresponding to the
currently observed sample xt from the other kernels

p̂t(x;ht) = (1− 1

nt
)

nt−1
∑

i=1

1

nt − 1
Kht

(x− xi) +
1

nt
Kht

(x− xt)

= (1− 1

nt
)p̂t−1(x, ht) +

1

nt
Kht

(x− xt). (8)

If we then assume that the KDE corresponding to the samples from the previous time-steps in (8) can be
approximated by our estimate of the distribution from (t − 1), i.e., p̂t−1(x, h∗) ≈ p̂t−1(x) (where h∗ is the
optimal choice of ht), then the optimal bandwidth ht for p̂t(x), (7) can be approximated by the bandwidth
for p̂t(x;ht), (3). This means that, under the above assumptions, we can use (6) as a heuristic for estimating
the optimal bandwidth of p̂t(x). In the following we propose an iterated plug-in rule which uses this heuristic
for online bandwidth estimation.

p̂t−1(x) p̂t(x)

xt

(a) (b)

Figure 1: The left image shows a Gaussian mixture model p̂t−1(x) from time-step t − 1 (bold line) and the currently observed
sample xt (circle). A Gaussian kernel is centered on xt (dashed line) and used to update p̂t−1(x). The right image shows the
current, updated, mixture p̂t(x).

Let xt be the currently observed sample and let p̂t−1(x) be an approximation to the underlying distribu-
tion p(x) from the previous time-step. The current estimate of the p(x) is initialized using the distribution

from the previous time-step p̂t(x) ≈ p̂t−1(x). The bandwidth ĥt of the kernel Kĥt
(x− xt) corresponding to

the current observed sample xt is obtained by approximating the unknown distribution p(x) ≈ p̂t(x) and
applying (6)

ĥt = [2
√

πR(p̂′′t (x))nt]
−1/5. (9)

The resulting kernel Kĥt
(x− xt) is then combined with p̂t−1(x) into an improved estimate of the unknown

distribution

p̂t(x) = (1− 1

nt
)p̂t−1(x) +

1

nt
Kĥt

(x− xt). (10)

Next, the improved estimate p̂t(x) from (10) is plugged back into the equation (9) to re-approximate ĥt and
then equations (9) and (10) are iterated until convergence; usually, five iterations suffice.

Note that with each observed sample the number of components in the mixture model increases. There-
fore, in order to maintain a low complexity, a compression algorithm is initiated whenever the number of
components exceeds a value Ncomp. As we will see in section 2.4 the compression (Algorithm 3) does not
force removing components but merely tries to remove some. Therefore the threshold Ncomp only deter-
mines the frequency at which the compression is called. To prevent unnecessary calls to compression, the
threshold Ncomp can be therefore set to some fixed large value or can be allowed to vary. In practice,
we use a simple rule to adjust the Ncomp online: If no components are removed in the compression step
(Algorithm 1, step 5), then Ncomp is increased, i.e., Ncomp ← cscaleNcomp, otherwise, if the number of the
remaining components falls below c−1

scaleNcomp, the threshold is decreased, i.e., Ncomp ← c−1
scaleNcomp. In

all the subsequent experiments, we use a scale factor cscale = 1.5. The procedure for online kernel density
estimation is outlined in Algorithm 1.
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Algorithm 1 : Online kernel density estimation

Input: p̂t−1(x), xt . . . the initial density approximation and the new sample
Output: p̂t(x) . . . the new approximation of density
1: Initialize the current distribution p̂t(x) ≈ p̂t−1(x).
2: Estimate the bandwidth ht of Kĥt

(x− xt) according to (9) using p̂t(x).
3: Reestimate p̂t(x) according to (10) using Kĥt

(x− xt).
4: Iterate steps 2 and 3 until convergence.
5: If the number of components in p̂t(x) exceeds a threshold Ncomp, compress p̂t(x) using Algorithm 3.
6: If required, adjust the threshold Ncomp.

2.2. Incorporating the negative examples

In the previous section we have proposed a method for online estimation of the mixture model from
all-positive examples using an online kernel density estimation. As discussed in the introduction, another
important aspect of the online learning is how to account for the negative examples. This feature is especially
important in real-life scenarios since it allows learning models from a noisy data and then refining these
models using additional negative examples – we call this the process of unlearning. Assume that, by observing
values of some feature x, we have constructed the following Mref -component Gaussian mixture model

pref(x) =

Mref
∑

i=1

wiKhi
(x− xi). (11)

Now assume that we obtain another pdf, a Mneg-component mixture

pneg(x) =

Mneg
∑

j=1

ηjKsj
(x− yj), (12)

which represents a negative example to what we want to learn. For example, we might want to learn how
the hue values of red objects are distributed. pref(x) would then be a (possibly) noisy model of the red color
which we have learnt sofar, and we wish to use a pdf pneg(x) estimated from the hue values of a yellow
object to refine our model of the red color. The main issue in the unlearning is thus how to incorporate
pneg(x) into the reference model pref(x).

We can think about pneg(x) as of a pdf which specifies the likelihood by which particular values of x
can be considered as a negative example to what we want to learn. A complement to pneg(x) therefore
specifies another positive example, which effectively assigns low probability to those values of x which are
very likely to be the negative example according to pneg(x). Thus, in summary, we propose to formulate
the unlearning in the following two steps: First, we generate a so-called attenuation function fatt(x), which
presents a complement to pneg(x), and maps the feature values x into interval [0, 1] by yielding 0 for the
values of x where pneg(x) is maximal and 1 for the values where pneg(x) is zero. Then pneg(x) is incorporated
into pref(x) simply by multiplying pref(x) with the attenuation function, yielding the attenuated mixture
model patt(x). The analytical solution to this procedure is described next.

The attenuation function is defined as

fatt(x) = 1− C−1
optpneg(x), (13)

where the normalization constant Copt guarantees that C−1
optpneg(x) ≤ 1 and thus all values of x are mapped

into the interval [0, 1]. Note that Copt corresponds to the maximum value in pneg(x) and cannot be trivially
calculated, since the maximum may lay in-between the components of the mixture. For that reason we
use a variable-bandwidth mean-shift algorithm [23], which we initialize at the centers of the components of
pneg(x) to detect its modes. The mode xopt, corresponding to the maximum value of pneg(x), is selected as
the maximum of the distribution and the normalization Copt is given as

Copt = pneg(xopt). (14)
5



The attenuated pdf patt(x) is obtained by multiplying the reference pdf with the attenuation function

patt(x) = C−1
normpref(x)fatt(x) = C−1

norm[pref(x)− fcom(x)], (15)

where we have defined fcom(x) = C−1
optpref(x)pneg(x) and Cnorm is a normalization constant such that

∫

patt(x)dx = 1. Note that since the product of two Gaussians is another, scaled, Gaussian [24], we can
rewrite fcom(x) as

fcom(x) =

Mref
∑

i=1

Mneg
∑

j=1

CoptwiηjKhi
(x− xi)Ksj

(x− µj)

=

Mref
∑

i=1

Mneg
∑

j=1

zijβijKσij
(x− µij), (16)

where zij =
σij√

2πhisj

exp[12 (
µ2

ij

σ2
ij

− x2
i

h2
i

− y2
j

s2
j

)], µij = σ2
ij(

xi

h2
i

+
yj

s2
j

), βij = Coptwiηj , σ2
ij = (h−2

i + s−2
j )−1. Now

we can derive the normalization Cnorm for the attenuated pdf patt(x) (15)

Cnorm = (1−
∑Mref

i=1

∑Mneg

j=1
βijzij)

−1. (17)

The proposed method for unlearning a mixture model is summarized in Algorithm 2.

Algorithm 2 : The algorithm for unlearning mixtures

Input: pref (x), pneg(x) . . . the reference mixture and the negative-example mixture.
Output: patt(x) . . . the unlearned mixture.
1: Detect the location xopt of the maximum mode in pneg(x) using the variable-bandwidth mean shift [23].

2: Scale pneg(x) with respect to the detected mode xopt (14) and calculate the attenuation function fatt(x)
(13).

3: Multiply fatt(x) with pref (x) and normalize to obtain the attenuated mixture patt(x) (15,16,17).

Note that while patt(x) is indeed a proper pdf, it is not a proper mixture model, since some of the
weights are negative. Furthermore, by introducing new attenuation functions, the number of components in
(15) increases exponentially, which in practice makes subsequent calculations inefficient and slow. For that
reason, after the attenuation, the resulting distribution needs to be compressed, i.e., we require an equivalent
mixture with a smaller number of components. Furthermore, for algorithmic reasons (because of the way
in which we define the compression in the subsequent sections) it is beneficial if the equivalent is a proper
mixture with all-positive weights. In the following we propose a methodology for obtaining such equivalents.

2.3. Approximating mixtures with mixtures

Assume we are given a reference mixture

p(x) =

M
∑

i=1

wiKhi
(x− xi), (18)

where all wi are not necessarily positive, but they do sum to one. Our goal is then to approximate the
reference (18) with a N-component mixture with all positive weights

p̂(x|θ) =

N
∑

j=1

γjKσj
(x− µj), (19)
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where θ = {γj , µj , σj}j=1:N denotes the parameters of the mixture, such that some difference criterion
between p(x) and p̂(x|θ) is minimized. Since the reference mixture is known, the difference between the
reference mixture and its approximation can be quantified by the integrated squared error (ISE)

ISE(θ) =

∫

(p(x)− p̂(x|θ))2dx. (20)

The problem of finding an equivalent to p(x) can thus be posed as seeking an optimal θ̂ while minimizing
the ISE:

θ̂ = arg min
θ

[

∫

p̂2(x|θ)dx− 2Ep(x){p̂(x|θ)}], (21)

where Ep(x){p̂(x|θ)} is the expectation with respect to the reference distribution p(x) and where we have
dropped

∫

p2(x)dx from the above equation since it does not depend on θ. Since we can calculate the deriva-
tives of ISE, δISE(θ)/δθ, analytically, efficient optimization schemes such as gradient descent or Levenberg-
Marquardt can be used in optimizing (21). However, in practice, when M is large and N ≈ M it is likely
that some components in p̂(x|θ) will be redundant, which may result in a slow convergence of optimization.
Moreover, in cases when p̂(x|θ) is poorly initialized, optimization can get stuck in a local minimum. There-
fore, a question remains how to determine the appropriate number of components in p̂(x|θ). To address
this issue, we note that component selection can be viewed as optimizing (21) with respect to the weights
γi of p̂(x|θ) (19). By driving some weights of (19) to zero we are effectively removing the corresponding
components. A useful insight into such optimization is provided by the theory of the reduced-set-density
estimation [25] and earlier results from the support estimation in the support vector machines [26]. In [25],
Girolami and He proposed a reduced-set-density approximations of kernel density estimates. A central point
of their approach was minimization of an ISE-based criterion, which is in spirit similar to our formulation
in (20). In line with their observations, we now inspect how the two terms of the right-hand side of (21)
affect the optimization of ISE w.r.t. the weights γi of p̂(x|θ).

If the first term of the right-hand side of (21) is kept fixed, minimization is obtained by maximizing the
second term Ep(x){p̂(x|θ)}. By expanding this term we have

Ep(x){p̂(x|θ)} =

N
∑

j=1

γj p̃j , (22)

with p̃j =
∫

Kσj
(x− µj)[

M
∑

i=1

wiKhi
(x− xi)]dx.

Note that (22) is a convex combination of positive numbers p̃i, which are expectations of components
in p̂(x|θ) under the reference p(x). In this case, maximization would be achieved by assigning a weight one
to the largest expectation p̃j and a zero weight to all others. Thus, if the reference distribution p(x) has a
dominant mode, then the component Kσj

(x−µj) of the approximating distribution p̂(x|θ) that agrees best
with this mode will be assigned a weight one, while all other weights will be zero. We say that the term
Ep(x){p̂(x|θ)} is sparsity-inducing in that it prefers those components of the approximating distribution
p̂(x|θ) which correspond to the high-probability regions in p(x).

Now note that minimizing ISE (21) with Ep(x){p̂(x|θ)} kept fixed equals to minimizing the first term
∫

p̂2(x|θ)dx. Expanding this term yields a weighted sum of expectations of pairs of components of p̂(x|θ)

∫

p̂2(x|θ)dx =

N
∑

i=1

N
∑

j=1

γiγjcij , (23)

where we have defined cij =
∫

Kσi
(x− µi)Kσj

(x− µj)dx.
The expectations among non-overlapping components will yield low values of cij , while expectations

among overlapping components will yield high values of cij . In this case, ISE would be minimized by
7



assigning small weights to the overlapping components and large weights to those which do not overlap.
Thus we can say that the term (23) is sparsity-inducing in that it prefers selection of those components that
are far apart.

From the above discussion, we can see that optimizing ISE (21) between p(x) and p̂(x|θ) will yield a
subset of components in p̂(x|θ) by selecting components in high-probability regions of p(x), while preferring
configurations in which the selected components are far apart.

Using (22,23) we can rewrite the minimization of ISE (21) with respect to the weights γi into a classical
quadratic program

arg min
γ
{1
2
γT Cγ − γT P} ; γT 1 = 1, γj > 0,∀j, (24)

where 1 is a column vector of ones, and where we have defined the vector of weights γT = [γ1, γ2, . . . , γN ],
a symmetric N ×N matrix C with elements cij (23) and a vector of P = [p̃1, p̃2, . . . , p̃N ] with elements p̃j

(22).
Note that since all components in the reference and the approximating distributions (18,19) are Gaus-

sians, C and P in (24) can be evaluated analytically. There is a number of optimization techniques available
for solving the quadratic program (24). In our approach we use a variant of a Sequential Minimal Optimiza-
tion (SMO) scheme [26], which was previously used by Girolami and He [25] for a similar optimization.

2.4. Compression algorithm

Using the results from the previous section, we propose an iterative compression algorithm, which is
similar in spirit to [27, 28], for finding a reduced equivalent to a reference Gaussian mixture model p(x).
We start from an approximation p̂(x|θ) which is equal to the reference mixture in cases when mixture p(x)
does not contain any negative weights. When compressing the unlearned mixture, we initially increase
the number of the components in the approximation by splitting each component with a negative weight
into two components and then make their weights positive. This in practice makes the approximation
adapt quicker to the reference distribution in regions where the reference distribution contains positive as
well as negative components. After the approximation has been initialized, the components are gradually
removed from p̂(x|θ) while minimizing the ISE criterion (20) between p̂(x|θ) and p(x). The compression
algorithm proceeds in the following two steps: reduction and organization. At the reduction step, a subset
of components from p̂(x|θ) is removed using SMO. In the next step, the organization step, we further reduce
the error between the reduced p̂(x|θ) and the reference p(x). This is achieved by optimizing (21) w.r.t. all
parameters θ in p̂(x|θ) using a Levenberg-Marquardt (LM) optimization with a constraint that all weights in
p̂(x|θ) are positive. These two steps are iterated until convergence. The procedure is outlined in Algorithm 3.

At each step of the iterative procedure described in Algorithm 3, a subset of components from p̂(x|θ)
is removed, thus gradually reducing the complexity of p̂(x|θ). The number of components removed at each
step can be controlled by inflating the variances of p̂(x|θ) by some inflation parameter α > 1 before applying
the SMO. For a large α, many components of p̂(x|θ) will overlap significantly and thus many components
will be removed. As a result, the final pdf p̂(x|θ) will be a smoothed equivalent of the reference pdf p(x).
However, removing too many components will increase the error in the approximation of p(x), and therefore
the inflation parameter α has to be set such that the inflated pdf is always close enough to the reference pdf
p(x). In our implementation, this is achieved by adjusting the α such that the Hellinger distance [29] between
p(x) and the inflated p̂(x|θ), H(p(x), p̂(x|θ)), is always smaller than some predefined distance Hdist. Note
that while the Hellinger distance is a proper metric between probability density functions and is constrained
to the interval [0, 1], it cannot be calculated analytically in a closed-form for mixture models. We therefore
calculate its approximation using the unscented transform [30]. For convenience, we derive the unscented

approximation of the Hellinger distance for mixture models in the Appendix A.
Once the selection step removes a set of components, the remaining set is optimized in order to minimize

the ISE between p̂(x|θ) and the reference p(x) (organization). Note that we do not have to optimize p̂(x|θ)
until convergence in this step. We only need to reduce the error between p̂(x|θ) and p(x) to the extent
that a set of components in p̂(x|θ) will overlap after the inflation and will be removed in the reduction step.
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Algorithm 3 : Compression algorithm

Input: pref (x), Hdist . . . the reference mixture and the maximum allowed Hellinger distance between pref (x)
and compressed counterpart.

Output: p̂(x|θ) . . . the compressed equivalent.
1: Initialization: construct p̂(x|θ) from p(x), such that all components have positive weights (see text).
2: Reduction:

• Inflate p̂(x|θ) into p̂α(x|θ) by increasing the variances σ2
j ← ασ2

j such that
H(pref (x), p̂α(x|θ)) = 0.7Hdist.

• Optimize (24) between the inflated p̂(x|θ) and p(x) w.r.t. γ using a SMO.

• Remove those components from p̂(x|θ) for which γi = 0.

3: Organization: Optimize ISE between p̂(x|θ) and p(x) using a LM optimization w.r.t. θ.
4: If the distance between pref (x) and p̂(x|θ) is small enough, i.e., H(pref (x), p̂(x|θ)) < Hdist, then accept

p̂(x|θ) as a potential compressed equivalent.
5: If at least one component was removed during the reduction procedure, and p̂(x|θ)) was accepted at

step (4), then go to to step (2), otherwise optimize θ until convergence and end compression.

Thus in practice we use five Levenberg-Marquardt iterations at each organization step. Only after no more
components are removed, we optimize p̂(x|θ) until convergence.

3. Experimental Results

Three sets of experiments were conducted to evaluate the proposed methods for online learning and ap-
proximation of probability density functions. The first two experiments were designed to demonstrate online
approximation of complex mixtures and to illustrate the concept of unlearning. In the third experiment we
show how the proposed algorithms can be applied for interactive learning of basic visual properties.

3.1. Online approximation of complex distributions

The aim of the first experiment was to demonstrate the performance of the online kernel density esti-
mation proposed in Section 2.1 – we will refer to this method as an online KDE. A set of 1000 samples was
generated from a reference pdf pref (x), which was a 1D mixture of a Gaussian and a uniform distribution
(Figure 2a). These samples were then used one at a time to incrementally build the approximation to the
original distribution using the Algorithm 1. At each time-step three other models were also built for refer-
ence. The first two were batch KDEs, and were built by processing all samples observed up to the given
time-step simultaneously. In the first KDE model, we refer to it as the optimal batch KDE, the bandwidths
of the kernels were estimated via solve-the-equation plug-in method [31], which is currently theoretically
and empirically one of the most successful bandwidth-selection methods. In the second KDE model, we call
this model a suboptimal batch KDE, the bandwidths were estimated using the Silverman’s rule-of-thumb
([9], page 60), which is a common choice of practicians. The third reference model was a Gaussian Mix-
ture Model, which was built by applying the online Expectation Maximization (EM) coupled with model
resampling and the Bayes Information Criterion [32] was used to select the number of components in the
model. Since the online EM-based model requires processing data in partial batches, this model was updated
using 100 samples at a time, and a maximum of 50 components was allowed in the model selection. Our
online KDE was initialized using the solve-the-equation plug-in method from the first ten samples and the
threshold Ncomps in the Algorithm 1 was initialized to Ncomps = 10. The online KDE was updated using
only a single sample at a time.

To quantify how the approximations evolve with each new sample, three different distance measures
were calculated between the obtained approximations and the reference model: the integrated squared error
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(ISE); a Hellinger distance2; and the log-likelihood of another set of 1000 randomly drawn samples from
the reference pref (x). The distances were averaged over thirty repetitions of the experiment. Along with
the distances, we have also recorded the average number of components in the approximations and for the
KDE-based methods also the average bandwidth assigned to the new kernel after observing each new sample.

(a) (b) (c)

(d) (e) (f) (g)

Figure 2: A reference mixture model (a) used in the online density approximation experiment. Approximations by online KDE
with parameter Hdist set to 0.05, 0.1 and 0.3 are shown in (b), (c) and (d), respectively, the approximations obtained by
suboptimal batch KDE and the optimal batch KDE are shown in (e) and (f), respectively and the approximation obtained by
the online EM is shown in (g). In (b,c,d,e,f,g), the reference is drawn in dashed (blue) line and the approximations are shown
by a full (red) line.

Figure 2 shows the approximations of the reference pdf after observing all 1000 samples. The approx-
imations from the proposed online KDE with the parameter Hdist set to 0.05, 0.1 and 0.3 are shown in
Figures 2(b,c,d). Recall that the parameter Hdist defines the maximal allowed error in the approximation
during the compression steps. We see that for small values of Hdist, the approximations agree well with
the reference pdf (Figure 2b,c). However, when Hdist was large, i.e., Hdist = 0.3, the reduction step in the
compression eventually removed the components which corresponded to the low-weight uniform distribution
and only retained the dominant mode (Figures 2d). In terms of the bandwidth selection, we can see from
the Figure 3(a), that the proposed online KDE with parameters Hdist ∈ {0.05, 0.1} produced similar band-
widths as the optimal batch KDE, while the bandwidths of the suboptimal batch KDE were consistently
over-estimated, which resulted in an over-smoothed approximation of the reference pdf (Figure 2e). Note
that the graphs of the estimated bandwidths in Figure 3(a) corresponding to the online KDEs with parame-
ters Hdist ∈ {0.05, 0.1} are virtually equal. This result is consistent with the evolution of the approximation
errors in Figure 4 where we compare the online KDE with the batch KDE: while initially the errors were
high for all approximations, they decreased with increasing number of samples. As expected, the error of
the batch KDE calculated using Silverman’s rule remained high even after all the 1000 samples have been
observed. On the other hand, the errors decreased faster for the online KDEs and came close to the errors
of the optimal batch KDE with increasing number of samples. This result is consistent across all three
measures of the approximation error in Figure 4. Note that the bandwidths in the optimal batch KDE were
calculated using all samples observed up to a given step. In contrast, the proposed online KDEs produced
similarly small errors using only a low-dimensional representations of the observed samples. This is seen in
Figure 3(b) where we show the evolution of the average number of components in the approximations. In
the batch KDEs (optimal and suboptimal), the complexity was increasing linearly with the observed number
of samples. Thus, after observing 1000 samples, the batch KDEs were composed of 1000 kernels. On the
other hand, the final approximations obtained by the proposed online KDEs with parameters Hdist = 0.1

2The Hellinger distances between the reference distribution and its approximations were calculated by a Monte Carlo
integration
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and Hdist = 0.05 contained only 12 and 20 kernels, respectively. While the complexity of the models pro-
duced by the online KDE with Hdist = 0.05 was comparable to that of the models produced by the online
EM (Figure 3b), both online KDEs consistently produced smaller errors than the online EM (Figure 5).
Note that, due to the resampling step, the limited sample size and the lack of regularization in the model
selection of the online EM algorithm, the resulting models sometimes contained components with nearly
singular variance (see, for example, Figure 2g). The consequence of this was an increased effective number
of components in the EM models. Note that, due to the resampling step, the limited sample size and the
lack of regularization in the model selection of the online EM algorithm, the resulting models sometimes
contained components with nearly singular variance (see, for example, Fig. 2g). The consequence of this
was an increased effective number of components in the EM models.

To provide an insight into the computational complexity of the online KDE, we have calculated the
average times required for the model update after observing the 1000th sample in our experiment. The
tests were performed with non-optimized code in Matlab [33] on a personal computer with a 2.6GHZ CPU.
The times are given in Table 1. The online EM required the longest computational time, which is largely
due to the model selection stages, while the suboptimal batch KDE required the shortest of computational
time. The online KDEs required on average a smaller amount of processing time per update step than the
optimal batch KDE. The reason si that the online KDE models have reached a bound on their complexity
fairly early (after observing approximately 300 samples – see Figure 3) and therefore the processing time
after observing the 1000th sample was approximately the same as if only 300 samples have been observed.
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Figure 3: The graphs show how the bandwidths (a) and the number of components (b) in the KDE approximations change
with increasing number of samples. The results for online KDE with Hdist 0.05 and 0.1 are depicted by bright (cyan) and dark
(red) full lines. The results for the batch KDE with the optimal and suboptimal bandwidth selection are depicted by dashed
(green) and dotted (blue) lines, respectively.
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Figure 4: Three error measures of the KDE approximations w.r.t. the number of samples: ISE (a), Hellinger distance (b) and
the log-likelihood (c). The results for online KDE with Hdist 0.05 and 0.1 are depicted by bright (cyan) and dark (red) full
lines. The results for the batch KDE with the optimal and suboptimal bandwidth selection are depicted by dashed (green) and
dotted (blue) lines, respectively.
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Figure 5: Three error measures of the online approximations w.r.t. the number of samples: ISE (a), Hellinger distance (b) and
the log-likelihood (c). The results for online KDE with Hdist 0.05 and 0.1 are depicted by bright (cyan) and dark (red) full
lines, while the results for the online EM are depicted by the black dash-dotted lines.

Table 1: Average time spent per model adaptation (tspent) after observing 1000 samples for the suboptimal batch KDE
(KDEsil), the optimal batch KDE (KDEplugin), the online KDE with Hdist = 0.1 (OKDE0.1), the online KDE with Hdist = 0.05
(OKDE0.05) and the online Expectation Maximization with model selection oEM . (Tested on a PC with a 2.6GHz cpu)

method KDEsil KDEplugin OKDE0.1 KDE0.05 oEM
tspent 0.04s 2s 0.4s 1.6s 13s

From the above results we can conclude that, when Hdist parameter is set to a low value,e.g. {0.05, 0.1},
the online KDE produces approximations with smaller errors than those obtained by a suboptimal batch
KDE and the online EM, while the errors are comparable to those of the batch optimal KDE . In terms of
the model’s complexity, the online KDE produces models with a much lower number of components than the
batch methods. While the complexity of the models is comparable to the models produced by the online EM,
the online KDEs produce significantly lower errors. Therefore, with increasing the number of samples, the
online KDEs converge in terms of estimation accuracy to the models produced by the batch state-of-the-art
KDEs, and do so using significantly less components in their models. The reason is that the optimization
(in compression as well as bandwidth selection) is not merely local in time, but is in fact distributed through
time. Each new observation improves the models, bringing them closer to the optimum in terms of accuracy,
while maintaining a low complexity. In the online KDE, the errors of approximation using Hdist = 0.05
and Hdist = 0.1 were virtually equal for number of samples lower than 600. As the number of samples
grew, the approximation error was decreasing faster for Hdist = 0.05, however, at a cost of an increased
complexity. To balance between the model complexity and approximation error, we choose Hdist = 0.1 for
all our subsequent experiments. For additional examples of online estimation of probability density functions
using the online KDE, see http://vicos.fri.uni-lj.si/data/matejk/ivcj08/SupplementalMaterial.htm.

3.2. Unlearning: A toy example

To demonstrate how the unlearning from the Algorithm 2 can be used in interactive learning, we consider
a toy-example of training a cognitive agent to learn the concept of a red color. Assume that we present the
agent with an object to which we refer as a ”red fork” (Figure 6a). The agent tries to learn the concept
of the red color by sampling hue values of pixels corresponding to the fork (green dots in Figure 6a) and
constructs a mixture model pred(x) from the sampled values (Figure 6b). Note that two modes arise in
pred(x) – one for the hue values of the red handle and one for the hue values of the yellow head. The model
pred(x) can now be used to calculate a belief of whether the color of a given pixel is red or not. The beliefs
of all pixels in the fork image (Figure 6a) are shown in (Figure 6h). Note that high beliefs are assigned to
the color of the handle and even higher to the color of the head. Thus the agent would wrongly believe
that the red as well as the yellow hues make up the concept of the red color. To rectify this we present a
yellow ball (Figure 6c) and say that its color is yellow and NOT red. As before, hue values are sampled
from the ball and a mixture model pyell(x) is constructed (Figure 6d). An attenuation function fatt(x)

12



0 0.05 0.1 0.15 0 0.05 0.1 0.15

0 0.05 0.1 0.15

0

0 0.05 0.1 0.15

0

1

0 0.05 0.1 0.15

a b c d

e f g h i

Figure 6: Hue values are sampled from (a) to initialize the mixture model pred(x) (b). The mixture pyell(x) corresponding
to the sampled hue values of a yellow ball (c) is shown in (d). The attenuation function fatt(x) is shown in (e) and the final
pred(x) before and after compression is shown in (f) and (g), respectively. The belief images corresponding to pred(x) before
and after unlearning, (b) and (g), are shown in (h) and (i), respectively. White colors correspond to high beliefs, while dark
colors correspond to low beliefs. The mixtures in (b,d,f,g) are show in bright (red) lines, while their components are depicted
in black lines.

(Figure 6e) is calculated from pyell(x) and used to unlearn the corresponding parts of pred(x); the resulting
mixture is shown in (Figure 6f). After compression, we obtain the corrected model of the red color concept
p̂red(x) (Figure 6g). Note that the mode corresponding to the yellow color has been attenuated, which is
also verified in the belief image (Figure 6i) where we have used p̂red(x) to calculate the beliefs of hue values
in (Figure 6a). The belief image shows that now only the colors of pixels on the fork’s handle are believed
to correspond to the concept of the red color.

3.3. Interactive learning of basic visual concepts

To further demonstrate the strength of the proposed algorithms for online learning we have embedded
them into a system for continuous online learning of basic visual concepts [34]. The system operates by
learning associations between six object properties (four colors and two shapes) and six low-level visual
features (median hue value, eccentricity of the segmented region, etc.). Once an association (a concept) is
created, a detailed model of each concept (properties-feature association) is constructed. As a testbed we
have used a set of everyday objects (see Figure7a for examples).

In the process of learning, a tutor presented one object at a time to the system and provided its description
– the concept labels. The system created associations between features and concept labels such that, for
example, the concepts of colors were associated with the hue feature. The associated visual features were
modelled by KDEs using the algorithms proposed in this paper. Therefore, the concept of the green color,
for example, was modelled by a KDE over the hue values of the observed green objects.

In this experiment, a set of 300 images of everyday objects was randomly split in two sets of 150 images.
One set was used for training and the other for testing. The images entered the learning system one by one
and at every step the quality of the current models was evaluated by trying to recognize the visual properties
of all testing images. The accuracy of recognition was defined as the ratio between the number of correctly
recognized concepts and the number of all the concepts from the test set. The experiment was repeated 50
times with different training and test sets and the results were averaged.

The evolution of the accuracy of the concept recognition is shown in Figure 7(b). It is evident that
the overall accuracy increases by adding new samples. The growth of the accuracy is very rapid at the
beginning, when new models of newly introduced concepts are being added, and remains positive even after
all models are formed, which is due to refinement of the corresponding representations (KDEs). Note that
this refinement does not come from increasing the number of components in the KDEs. This can be seen
in Figure 7(c), where we show how the number of components evolved on average with new observations.
Initially, the number of components is rapidly increasing, and after a while it remains approximately constant.

To demonstrate the unlearning algorithm, we repeated the experiment, but now every 10-th training
sample was labelled incorrectly in the first half of the incremental learning process. As a result, the underlying
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KDE representations were corrupted by the incorrect feature values and the recognition accuracy degraded
(red line in Figure 7b). However, by applying unlearning to the corrupted representations, they were
successfully corrected, which resulted in a significant improvement of the recognition accuracy (blue line).
The recognition results after unlearning were very similar to those obtained in an error-free learning process
(compare the blue and the green line in Figure 7b).

Figures 7(d-g) show an example of the evolution of the individual models over time. At the beginning, the
models were very simple and rather weak, since they were obtained considering only a few training samples
(Figure 7d). However, as new samples were observed, they adapted to the variability of the individual
concepts. Figure 7(g) shows the models after all 150 training samples have been observed. The efficiency
of the compression algorithm can be seen by inspecting columns in Figures 7(e) and (f) – most obvious
compression results are seen in the second and the last column. The compressed models resemble the
original ones at a very high degree. Figure 7(h) shows an example of updating the final models from
Figure 7(g) by incorrectly labelled training samples. The proposed unlearning algorithm was then applied
to these models by unlearning the incorrectly presented images and concepts. Figure 7(i), which depicts the
obtained models, shows that the error recovery was successful and that the information that was incorrectly
added into the models was successfully removed.

4. Conclusion

A new approach to online estimation of Gaussian mixture models for interactive learning was proposed.
The approach consists of three main contributions. The first contribution is a new approach to incremental
Gaussian mixture models which allows online estimation of probability density function from the observed
samples. This approach was derived by an online extension of a batch kernel density estimation (KDE).
The second contribution is a method for unlearning parts of the learned mixture model, which allows for
a more versatile learning. The third contribution is a method for maintaining a low complexity of the
learned mixture models, a compression, which is based on iterative removal of the mixture components
and minimization of the L2 distance between the original mixture and its approximation. Results of the
experiments have shown that, in an online estimation of the probability density functions, a crucial part
is to allow the models to have some redundant complexity, so that they can efficiently adapt to the future
data. We have seen that if the errors introduced by the model compressions are kept sufficiently low, the
adaptation will be successful even after observing a large number of samples. In our approach, these errors
were quantified in terms of the Hellinger distance and we have proposed a numerical approximation for its
evaluation between two mixture models.

The performance of the online kernel density estimation (OKDE) was first demonstrated with an example
of online estimation of a complex distribution from individual samples. In terms of the error between the
approximations and the reference distribution, the OKDE outperformed an online EM-based mixture model,
a widely-used batch KDE and produced results which were comparable to a batch state-of-the-art KDE. In
contrast to the batch KDEs, where the model complexity increased with the number of samples, the OKDE
maintained a low complexity even after a large number of samples have been observed. We have applied the
proposed methodologies for online learning/unlearning to a tutor-supervised interactive learning of basic
visual concepts in a cognitive agent. In this experiment the tutor presented the agent with an object and
provided labels (concepts) associated with the objects visual properties. The agent was gradually building
representations of the visual concepts using the OKDE and was able to achieve a high accuracy of recognition
when the tutor provided error-free labels. When the labels contained errors, the recognition decreased, since
false examples got incorporated into the models. However, using the unlearning strategy, the tutor was able
to easily improve the models such that the accuracy of the recognition increased back to the level of learning
with error-free labels.

The methodologies proposed in this paper were designed for online estimation of models for stationary
distributions (i.e., distributions which do not change in time), and have been demonstrated to allow an
efficient approach to online learning in cognitive agents. In our future work we will extend this approach
and apply it to other online learning problems which consider nonstationary distributions as well. Another
important aspect to be further researched is the apparent nonstationarity of the distribution which can come
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form a particular order in which the data arrive. We expect that this will have important effects on the
convergence properties of the method. We have noticed in our experiments that, while the online KDEs con-
verge to those of the batch state-of-the-art, initialization plays an important role in the rate of convergence.
If the initial data points are sampled randomly from the target distribution they convey the information
of the distribution’s scale, the bandwidths are initialized properly and the models converge fairly fast to
the optimum estimates. However, in a pathological situation the initial data might be sampled only from
a small part of the distribution. Then the initial scale would have been severely underestimated, resulting
in underestimated initial bandwidths and under-smoothed distribution. During the online approximation
many additional samples would have been required to remedy these effects. Another pathological situation
would be the case when the bandwidths are initially severely overestimated, producing an overestimated
distribution. In that situation, it is likely that the models would be initially over-compressed. Indeed,
compressions which are valid at some point in time can turn out to be invalid only after many additional
samples arrive. Again, more samples would be required to remedy the effects of these early compressions.
The reasons for such behavior in the pathological situations is that the optimizations involved in compres-
sion and bandwidth selection produce only a locally optimal solutions. While these situations typically do
not come to effect when the samples arrive randomly from a stationary distribution, we expect them to be
significant when considering nonstationary distributions and ordered data. A further consideration is deriv-
ing a faster method for compressing the mixture models. Indeed, we have found that, while the bandwidth
selection consumes only a fraction of the method’s processing time, the majority of the processing time is
spent for compression of the mixture models. In our future work, we will also consider derivation of a faster
compression method which would provide a comparable estimation accuracy.
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A. The unscented Hellinger distance

In this appendix we derive a numerical approximation to the Hellinger distance between two one-
dimensional Gaussian mixture models p1(x) and p2(x) via the unscented transform. The unscented transform
is a special case of a numerical integration technique called a Gaussian quadrature [35], which uses a small
set of carefully placed samples to evaluate nonlinear transformations of Gaussian variables (see, e.g. [30]).
The squared Hellinger distance [29] between p1(x) and p2(x), is defined as

H2(p1, p2)
∆
=

1

2
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1
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1
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Similarly to a Monte Carlo integration [36] we define an importance distribution p0(x) = 1
2p1(x) + 1
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which contains the support of both, p1(x) as well as p2(x). In our case, p0(x) is a Gaussian mixture model

of a form p0(x) =
N
∑

i=1

wiKhi
(x− xi), and we rewrite (25) into

H2(p1, p2) =
1

2

∫

p0(x)
(p1(x)

1
2 − p2(x)

1
2 )2

p0(x)
dx

=
1

2

N
∑

i=1

wi

∫

g(x)Khi
(x− xi)dx, (26)

where we have defined g(x) = (p1(x)
1
2 −p2(x)

1
2 )2

p0(x) . Note that the integrals in (26) are simply expectations over

a nonlinearly transformed Gaussian random variable x, and therefore admit to the unscented transform.
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The unscented squared Hellinger distance is thus defined as

H2(p1, p2) ≈
1

2

N
∑

i=1

wi

2
∑

j=0

g((j)Xi)
(j)Wi, (27)

where {(j)Xi,
(j)Wi}j=0,1,2 are triplets of weighted sigma-points corresponding to the i-th Gaussian Khi

(x− xi),
and are defined as

(j)Xi = xi + (−1)j
√

1 + κhi,

(j)Wi =

{ κ
1+κ ; j = 0

1
2(1+κ) ; otherwise

. (28)

In line with the discussion on the properties of the unscented transform in [30], we set the parameter κ to
κ = 2.
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Figure 7: Learning of basic object properties. Seven everyday objects from the database (a). The evolution of the recognition
accuracy through time for online learning on correct data (green line), on partially incorrect data (red line), and after unlearning
(blue line) (b). The average number of components through time (c). An example of the evolution of the KDE models
representing six basic object properties (‘green’, ‘compact’, ‘yellow’, ‘blue’, ‘elongated’, ‘red’) through time after observing 30
(d), 80 (e), 90 (f), and 150 (g) training images. Final models updated with incorrect labels (h). Models after unlearning (i).
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