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Computer Vision Laboratory

Faculty of Computer and Information Science
University of Ljubljana
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Abstract

Under in-plane rotations of a panoramic camera, the
information content of a panoramic image is, in general,
preserved. However, different representations that can be
derived have important implications on further processing,
e.g. for appearance-based localization. We discuss several
approaches based on different representations that have
been proposed and evaluate them from different points-of-
view, in particular, we argue that most of them are not suit-
able for robust localization under partially occluded views.
In this paper we propose a representation—eigenspace of
spinning-images—which enables a straightforward appli-
cation of the robust estimation of eigenimage coefficients
which is directly related to the localization.

1. Introduction

Recent studies have shown good prospects for appear-
ance-based localization using panoramic sensors [1, 6, 7, 8,
14]. Panoramic sensors capture a wide field-of-view and
enable efficient characterization of a location by a single
panoramic image1. During the training (learning) phase the
panoramic images are collected in the environment. The
redundant information captured in similar views is usually
efficiently handeled by compressing the set of images with
a PCA transform which leads to the so-called eigenspace
representation [12, 13] of the environment map. Other basis
functions such as Fourier basis [7] have also been used to
approximate the learning set. The actual localization phase
can be described as the search for the closest match between

�This work was supported by the Ministry of Science and Technol-
ogy of Republic of Slovenia (Project J2-0414 and SI-CZ Intergovernmen-
tal S&T Cooperation Programme).

1In some applications even simplified one-dimensional surround views
can be used [4, 5, 6].

the current view and the views (or their interpolations) in the
environment map.

The appearance-based localization strategy described
herein is strongly related to the appearance-based object
recognition [10, 12, 13]. However, in contrast to object
recognition, where the target to be recognized usually oc-
cupies only a part of the image (on a cluttered background),
in our case the complete image has to be recognized. When
using panoramic images as representations of positions, we
can expect that views taken at nearby positions and oriented
in the same way tend to be strongly correlated. This allows
us to build a compact representation that eliminates redun-
dancy.

The information content of a panoramic image depends
only on the location at which the image is captured and not
on the orientation of the sensor. However, panoramic im-
ages taken at the same location may not be suitable for di-
rect matching if they differ due to different in-plane orienta-
tions of the panoramic camera. The rotation variance must
therefore be either encoded in the representation, or han-
dled at the recognition stage. Usually panoramic images
are being transformed to cylindrical panoramic images, so
a change in the orientation of the sensor (in a plane perpen-
dicular to the optical axis) results in a row-wise shift of the
image (see Fig. 1).

In the literature one can find several approaches that
try to deal with the problem of in-plane rotations of the
panoramic sensor [1, 7, 14]. Driven by a desire to obtain
a compact representation, the general tendency has been
to represent each position with just one image. Having
one image for each location in an arbitrary orientation in
general prevents an efficient matching to estimate the lo-
calization. Thus, different representations have been pro-
posed that achieve some sort of rotational-invarance, which
translates in a shift-invariance for cylindrical panoramic im-
ages. One way to achieve the invariance is by applying
a tranformation that produces the same output regardless
of the shift in the input image. Such a transformation is
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Figure 1. The cylindrical panoramic images
(a) and (b) taken at viewpoints 60 cm apart.
The image (c) was taken at the same position
as (b), with sensor rotated by 90Æ.

autocorrelation (which in the particular case of cylindrical
panoramic images can also be applied row-wise [1]) or the
FFT power spectrum. Another approach is to orient the im-
ages in a reference orientation. This can be achieved either
by using some external sensors, e.g., a gyro-compass or ex-
ploiting the image content as it is the case of Zero-Phase-
Representation (ZPR) [14].

We argue in this paper that while these approaches
achieve shift-invariance, they fail at the localization stage
when the input image locally deviates from the image stored
in the environment map. These deviations can sometimes
be a side effect of the design of the panoramic sensor (e.g.,
self-occlusion of the camera holder) or may be caused by
occlusions due to objects moving in the environment. Since
panoramic images capture a wide field-of-view it is almost
impossible to avoid any disturbances during the localiza-

tion (operation) phase, thus it is essential that a representa-
tion of the environment map enables efficient robust match-
ing. Thus, we propose in this paper a representation—
eigenspace of spinning-images—which enables a straight-
forward application of the robust estimation of eigenimage
coefficients which is directly related to the localization.

The paper is organized as follows: In the next section we
give a short overview of different representations that have
been proposed, and point out their major features. In Sec-
tion 3 we introduce our new representation which is based
on the integration of all possible shifted (oriented) images
in an eigenspace, i.e., eigenspace of spinning-images, and
show some interesting properties of this representation. In
Section 4 we describe the robust approach to estimation of
coefficients of the eigenspace which is directly related to
the localization problem. We conclude with a summary in
Section 5.

2. Related work

In this section we give a short overview of the representa-
tions that have been proposed for the appearance-based lo-
calization using panoramic images and point out their major
features. The representations are discussed with respect to
their computational complexity, storage demands, and abil-
ity to be used for robust localization. Particularly, we em-
phasize robustness, since localization should be performed
in dynamic environments, where noise and occlusions occur
frequently.

A simple straightforward approach is to build a represen-
tation by taking one image at each location in an arbitrary
orientation of the sensor. At the matching stage, the input
image (captured in a different unknown orientation) must be
sequentially shifted and matched, which is computationally
very demanding if not prohibitive. However, robust local-
ization is possible since the two images (the input image
and the stored one) can be compared locally, which means
that we can, at least in principle, successfully cope with oc-
clusions [2].

Another approach is to perform autocorrelation, either
by row and column or just by row direction, on both the
training set of images and on the input images [1], which re-
sults in a shift-invariant representation. Recognition is then
performed as direct matching between the input image and
the stored ones. An example of a row-autocorrelated im-
age is shown in Fig 2. However, the method has two draw-
backs: first, the autocorrelation is not a one-to-one mapping
and therefore different images can result in equivalent rep-
resentations. Secondly, by autocorrelating an image local
deviations are spread over the whole transformed image,
therefore the method is non-robust with respect to partial
occlusions in the input image.

Another approach is to use images that are oriented in
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Figure 2. A row-autoccorrelated cylindrical
panoramic image.

a reference orientation. For example, we can estimate the
absolute orientation from other sensors, such as a gyrocom-
pass, light polarization etc. These methods are sucessfull if
such sensors are available and enough reliable. On the other
hand, Pajdla and Hlaváč [14] suggest to estimate a reference
orientation from images alone with the Zero Phase Repre-
sentation (ZPR). ZPR, in contrast to autocorrelation, tends
to preserve the original image content while at the same
time achieving rotational invariance. It orients images by
zeroing the phase of the first frequency of the Fourier trans-
form of the image (see Fig. 3). The method is sensitive to
variations in the scene, since it operates with only one fre-
quency using a global transform. To alleviate the problem,
one could apply ZPR along individual rows, to possibly im-
prove the robustness in case that at least some of the rows
are not occluded.

Figure 3. Left: original cylindrical panoramic
images taken at positions 60 cm apart in ran-
dom orientation. Right: Images from the left
shifted as determined by the ZPR.

In our previous work [8] we have experimented with dif-
ferent representations in the eigenspace framework. We ar-
gued that representations that are reversible allow a higher
localization performance. We have also shown that the dif-

ferent representations are comparable with respect to stor-
age and computational complexity.

Realizing that the methods based on the ZPR and the
autocorrelation are non-robust, we propose a representation
which allows us to apply robust local methods for recogni-
tion.

3. Eigenspace of spinning-images

To enable efficient matching of input images which may
be partially occluded, we propose in this paper a novel rep-
resentation which incorporates the information about all
possible orientations of the panoramic sensor (althought
only one image per location needs to be taken). The prin-
cipal idea is to acquire one image at each location in the
learning stage and then shift the cylindrical panoramic im-
age rowwise in order to simulate all possible rotations. All
images generated in this way are then compressed by the
PCA to form the final representation. Localization is then
performed by projecting the momentary image directly onto
the eigenspace (in the case of robust procedure we in fact
have to solve an overconstrained set of equations [10, 11]),
followed by searching for the nearest point on the spline.

The approach needs no preprocessing of individual im-
ages and the overall appearance is preserved in the repre-
sentation. As the representation has all the desired proper-
ties, the question is how much the storage demands increase
in this case. A graph showing the reconstruction accuracy
(derived from the cumulative sum of eigenvalues) with re-
spect to the percentage of eigenvectors for different number
of stored images per location can be seen in Fig. 4. The
representation with N images is built using one image per
location, each of them oriented in a reference direction. The
representations denoted by N �K are made of images that
are shifted sequentially by 360Æ=K. As one can see, the
compression ratio increases with the number of stored im-
ages per location. The graph in Fig. 5 shows the ratio of the
storage cost and the processing cost for achieving the 20%
and 40% reconstruction error with respect to the number of
images stored per location. The processing cost is regarded
as the number of shifts needed to compensate for the lack
of orientations in the representation. When increasing the
number of input images by 50x, the dimensionality of the
eigenspace required to achieve same reconstruction error in-
creases just by a factor of 2. This ratio even decreases with
the increasing number of input images.

Features of the covariance matrix and eigenvectors

As we have shown, the set of shifted images compresses
well and it can be efficiently represented at an acceptable
cost in terms of storage requirements. It is interesting to
analyze the covariance matrix produced by a set of shifted
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Figure 4. Reconstruction accuracy derived
from the cumulative sum of eigenvalues.

images and the implications on the eigenvectors. It seems
that these properties can help us further reduce the overall
complexity.

Let us first analyze a 1-D case: we take a 1-D signal
x = [x0; x1; : : : ; xn] and then shift it sequentially in order
to create a spinning-signal matrix

X =

2
66664

x0 x1 : : : xn
xn x0 : : : xn�1
xn�1 xn : : : xn�2
: : : : : : : : :
x1 x2 : : : x0

3
77775

: (1)

Next we perform a PCA transform. To obtain the eigenvec-
tors, we have to calculate the covariance matrixQ = XXT .
It can be shown, that, when the matrix X contains all the
possible shifts of the signal, the covariance matrix forms a
symmetric Toeplitz matrix:

Q =

2
66664

R0 R1 R2 : : : Rn

R1 R0 R1 : : : Rn�1

R2 R1 R0 : : : Rn�2

: : : : : : : : :
Rn Rn�1 Rn�2 : : : R0

3
77775

: (2)

The eigenvectors of the Toeplitz matrices have some inter-
esting properties [3]:

Theorem 1 Let Q have distinct eigenvalues. Then Q has
dn=2e symmetric and bn=2c skew symmetric eigen-
vectors.

Theorem 2 If the eigenvalues of Q are distinct and ar-
ranged in a descending order, the corresponding eigen-
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Figure 5. Storagecost� processing costfor the
20% and 40% reconstruction error with re-
spect to the number of images stored per lo-
cation.

(b)(a)

Figure 6. The covariance matrices: (a) 1D sig-
nal and (b) 3-row image.

vectors will be alternately symmetric and skew sym-
metric. If n is odd, the first vector will be skew sym-
metric. If n is even, the first eigenvector can be either
symmetric or skew symmetric.

Based on this two theorems, one can further decrease the
storage requirements.

Now let us analyze a case of a spinning-image. A 2-D
image consists of several rows that are individually shifted
and the matrix of spinning-images looks like

X =

2
664

x0 x1 : : : xn y0 y1 : : : yn
xn x0 : : : xn�1 yn y0 : : : yn�1
: : : : : : : : : : : : : : : : : :
x1 x2 : : : x0 y1 y2 : : : y0

3
775 :
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Figure 7. (a,b) The first two eigenvectors
(eigenimages) and their second (c) and twen-
tieth (d) rows. The third (e) and the fourth (f)
eigenvector and their second (g) and twenti-
eth (h) rows.

The covariance matrix of X in this case consists of
blocks, which are Toeplitz matrices.

Two examples of covariance matrices are shown in
Fig. 6, one for a 1-D signal (a) and one for a 3-row image
(b).

The properties of the eigenvectors of the Toeplitz ma-
trices cannot be directly applied to the 2D cylindrical
panoramic images. However, when analyzing the proper-
ties of our experimental results, we found that the shape of
the eigenvectors row-wise follows the Theorems 1 and 2 to
a significant degree. As it can be seen from Fig. 7, the prin-
cipal eigenvectors (depicted as eigenimages) take the shape
of harmonic functions of different frequencies. The func-
tions appear in pairs, as suggested by the Theorem 2.

The distribution of coefficients in the eigenspace (see
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Figure 8. The distribution of coefficients in a
2 � D space spanned by the first two eigen-
vectors.

Fig. 8) also raises questions about the possibility of an al-
ternative computation technique, which will be explored in
our future work.

Localization experiments

The results on the localization using the proposed me-
thod are presented in Fig. 9. The environment of the
CMP lab was represented by a learning set of 62 cylin-
drical panoramic images, taken at positions on squares of
60�60 cm [9]. These positions are denoted as small squares
in Fig. 9. The images were taken using a panoramic cam-
era with a spherical mirror and warped to form cylindrical
images. Then, all the images were sequentially shifted in
steps of 7:2Æ. The principal eigenvectors were calculated
and selected as bases for the eigenspace consisting of the
projections of all the images (62 acquired and 3038 obtained
by shifting the original image). The points so obtained
were interpolated on a 5 � 5 cm grid to form a spline. We
tested the localization by using a 2, 10, and 20-dimensional
eigenspace. As a testing set we used 100 images taken at
measured positions, depicted in Fig. 9 as full circles2. There
are no significant occlusions in the images of the testing set,
besides some changes in the illumination in the windows
area. The empty circles in Fig. 9 denote the recovered path
after projecting all 100 original test images. As it can be
seen from the figure, we can achieve a mean error of un-
der 15 cm by using a 20-dimensional eigenspace. Next we
explain how to perform the localization in case of partial
occlusions in the input images.

2None of the images of the learning set was included in the testing set.
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Figure 9. Localization test on 100 images using a 2, 10 and 20 dimensional eigenspace.

4. Robust recognition

Once the model (i.e., the eigenspace) is built, recogni-
tion of a view is performed by recovering the coefficient
vector q which defines the linear combination of eigenvec-
tors that characterize the input image. As every point in the
eigenspace is associated with position parameters, we can
make an estimation of the current position. The standard
method to recover the parameters is to project the image
vector onto the p, p � n-dimensional3 eigenspace [13]:

qj(y) =< y; ej >; j = 1 : : : p ; (3)

where y is the novel image vector and ej are the eigenvec-
tors. However, such calculation of parameters is non-robust
and thus not successful in the case of noisy or occluded
input data. If we imagine a mobile robot roaming around
with a model acquired under a set of stable conditions, ev-
ery change in the environment, such as displaced objects,
people walking around etc. can result in severe occlusions
with respect to the original stored images. To overcome this
problem, we propose to use a robust approach [10, 11], that,
instead of using the complete image vectors, generates and
evaluates a set of hypotheses r as subsets of image points
r = (r1; r2; : : : ; rk). In fact, the coefficients can be recov-
ered by solving a set of linear equations on k = n points:

xri =

nX
j=1

qj(x)ejri 1 � i � n : (4)

The principle of such computation is illustrated in Fig. 10.

3
n denotes the full dimensionality of the eigenspace.

+   =     q1

   =     q1

+ q2

+ q2

+ q3

+ q3

   =     q1 + q2 + q3 +

+

Figure 10. Calculating the coefficients from a
system of linear equations.

By selecting only p; p � n eigenimages as our bases,
we cannot use the previous set of equations, but we rather
have to solve an over-constrained system in a robust way, so
that the solution set of parameters minimizes

E(r) =
kX

i=1

(xri �

pX
j=1

qj(x)ejri)
2 : (5)

We solve the system on k; k > p points, where k is sig-
nificantly smaller than the total number of image points. We
first randomly initiate the set of k points and then seek the
solution which minimizes Eq.(5) in a least squares manner.
Then we repeatedly reduce the set of points by eliminating
those with the largest error. By doing so we achieve that
only the points with a small error contribute to the compu-
tation of parameters. As we can see in Fig. 11, at the end
most of the points in the occluded regions are excluded from
the computation.

To increase the probability of avoiding points that are
noise or belong to occlusion, several different hypotheses
are generated. A hypothesis consists of a set of parame-
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Figure 11. 60% occluded image. Crosses de-
note the points that contribute to the genera-
tion of a hypothesis.
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Figure 12. Mean error of localization for the
standard and for the robust method.

ters, an error vector � calculated as the squared difference
between the data and the reconstruction, and the domain
of compatible points that satisfy an error margin constraint.
These hypotheses are then subject to a selection procedure,
based on the Minimal Description Lengthprinciple, as de-
scribed in [10, 11]. The selection procedure selects the
good hypotheses and rejects the superfluous ones by pro-
moting those with a large number of encompassed points
and a small overall deviation between the data and the re-
construction.

The performance of both the standard and the robust
method at higher levels of occlusion noise is compared in
Fig. 12. We can see a significant improvement in precision
as a result of applying the robust method. Even in situations
of severe occlusion when more than half of the image is oc-
cluded, the robust method retrieves positions that are rea-
sonably close to the correct ones. This can be clearly seen
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Figure 13. Localization on an imaginary path
of 100 images at 60% occlusion with the stan-
dard method.

in Figs. 13 and 14. On the left we can see that the standard
method breaks down under ambiguity of the data while the
results of the robust estimator on the right show quite regu-
lar localization results with mean error under 60 cm.

5. Conclusions

In this paper we have presented a representation—eigen-
space of spinning-images—which leads to an efficient and
reliable appearance-based localization using panoramic im-
ages. We have shown that the gains outweigh by far the
moderate increase in the storage requirements with respect
to the previous representations. The major strength of the
representation is that it enables robust localization under
partial occlusions which has been demonstrated by the ex-
periments on a large data set.

Our work in progress is directed towards two goals: first
to improve or modify the proposed representation based on
the specific features revealed by the analysis of covariance
matrix and eigenvectors of the covariance matrix obtained
for a set of shifted images, and secondly to improve the ro-
bust procedure of estimating the coefficients of eigenimages
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by exploiting local structure of panoramic images.
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