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Abstract 

The results of recent studies on the possibility of spa- 
tial localization from panoramic images have shown good 
prospects for view-based methods. The major advantages 
of these methods are a wide field-of-view, capability of mod- 
elling cluttered environments, and flexibility in the learning 
phase. The redundant information captured in similar views 
is efficiently handled by the eigenspace approach. However, 
the standard approaches are sensitive to noise and occlu- 
sion. In this paper, we present a method of view-based lo- 
calization in a robust framework that solves these problems 
to a large degree. Experimental results on a large set of 
real panoramic images demonstrate the effectiveness of the 
approach and the level of achieved robustness. 

1. Introduction and motivation 

When dealing with autonomous systems that freely 
move in space, an important problem to solve is the esti- 
mation of the instantaneous position. In the case of au- 
tonomous robot navigation, localization is necessary for 
motion planning. In augmented reality applications, local- 
ization of the observer is crucial for registration that allows 
a combination of virtual and real environments. 

In our work we define the problem of localization as 
the task of recognizing a panoramic view (see Fig. 1 for 
an example of cylindrical panoramic images) from a set of 
panoramic views acquired in the learning phase. In the last 
decade many researchers have shown that feasible models 
of the world can be constructed without using precise geo- 
metrical information [2,6,7]. Namely, a model of the world 
can be constructed as a memory map, built from adequately 
compressed sets of images. Such methods have been suc- 
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cesfuly tested in the areas of object [5 ,  71 recognition. The 
main motivation for applying such an approach to the prob- 
lem of localization is the analogy between recognizing an 
object in the scene and recognizing the environment. In 
contrast to object recognition, the target to be recognized 
in the case of localization is not only a part of the image 
(on a cluttered background), but rather the complete image. 
If we use panoramic images as representations of positions, 
we can expect that views taken from nearby positions and 
oriented in the same way tend to be strongly correlated as 
it is in the case of looking at an object from two nearby 
viewpoints (Fig. 1). This allows us not only to design an 
efficient strategy based on correlation, but also to build a 
compact representation that eliminates redundancy. 

Figure 1. Two cylindrical panoramic images 
(labeled 50 and 53 in the path set) taken from 
viewpoints 60 cm apart. 

Another motivation comes from the discoveries on navi- 
gation strategies of insects, that are, although limited in the 
brain size, capable of amazingly confident navigation and 
of self-localization. In fact, some studies (see [4] and the 
references therein) imply, that wood ants may use a repre- 
sentation of the environment that is built from wide-angle 
snapshots of the scene. Localization is then performed 
by comparing the instantaneous view with the stored snap- 
shots. According to this and some other studies the patterns 
are processed retinotopically, i.e, the snapshot is not seg- 
mented, but interpreted as a whole. 

For building a compact model from a set of images, 
the eigenspace approach proved itself as a viable one [3]. 
A similar work was done by Aihara et al. [1] who used 
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row-autocorrelated transforms of cylindrical panoramic im- 
ages in order to achieve invariance to rotation of the sensor 
around the optical axis. The approach suffers from less ac- 
curate results on novel positions, since by correlating the 
images some of the information is lost. An altemative ap- 
proach was proposed by Pajdla and HlavS [8] who used an 
appearance-preserving rotational invariant representation, 
i.e, the Zero Phase Representation (ZPR). 

The major limitation of these approaches is the sensitiv- 
ity of the matching stage to noise and occlusion. It is clear 
that one has to cope with occlusions in the scene, such as, 
for example, people walking by, other objects being moved 
around the environment etc. In this paper, we propose a 
method for robust localization by applying a robust proce- 
dure for recovery of parameters from the eigenspace [5 ] .  

The paper is organized as follows. In section 2 we first 
discuss the major properties of panoramic images and the 
distribution of their correlation over the sensed environ- 
ment. In section 3 we describe the procedure for building 
the environment model from panoramic views and give an 
overview of the robust recognition of views. In section 4 we 
present the results on non occluded and occluded data. We 
conclude with a summary and an outline of future work. 

2. Correlation of panoramic images 

We have already emphasized the analogy between lo- 
calization and object recognition. When looking at an ob- 
ject from two nearby viewpoints, there is a high probability 
that the two views are very similar to each other. If the 
panoramic sensor has a fixed orientation, as if using an ex- 
temal compass, two images taken at nearby positions also 
tend to be strongly correlated. As it can be seen in Fig. 2,  
the distribution of correlation is far from a simply charac- 
terized function, however, it gives a good indication of the 
current location. 

Of course, we cannot expect that an external compass 
is always available. In such a case, one has to employ a 
transformation that maps cylindrical panoramic images into 
a representation that is invariant to the rotation of the sensor 
and also preserves the properties of the correlation distribu- 
tion. As it was shown in [3], this can be achieved by using a 
transformation that preserves appearance, such as the ZPR 
transform, proposed in [8]. 

3. Panoramic eigenspace 

As already stated we represent the environment by a set 
of panoramic images Z = {XI . . . XN}, taken in the learn- 
ing phase at arbitrary positions. We transform the images 
so that they are all oriented the same way. This enables 
us to efficiently compress them by the eigenspace method. 
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Figure 2. Correlation of panoramic images in 
space. XY plane represents the coordinates 
of the experimental environment. Measured 
and then interpolated is the correlation with 
image at X=440, Y=660. 

The eigenspace method consists of solving the Singular 
Value Decomposition on the covariance matrix of the (nor- 
malized) images in Z, to obtain an orthogonal set of vec- 
tors el, e2 . . . , e,, usually referred to as eigenimages. If 
we then choose a subset of p eigenimages with the largest 
eigenvalues, we can approximate in the least squares sense 
each image parametrically as a linear combination of that 
subset to a desirable degree of accuracy. Namely, every 
model image xi therefore projects into some point qi in the 
eigenspace, spanned by the selected eigenimages [7 1. 

The major advantage of the eigenspace method is that 
the correlation in the image space is related to the Euclidean 
distance in the eigenspace, i.e., the stronger are the two im- 
ages correlated, the closer will their projections lie in the 
eigenspace. It is therefore possible to densely interpolate 
the set of points to obtain a spline that represents an ap- 
proximation of an arbitrarily dense set of real-world im- 
ages [7]. Panoramic views from intermediate positions are 
in that way approximated by a spline, 

3.1. Robust recognition 

Once the model is built, recognition of a view is per- 
formed by recovering the coefficient vector q of the instan- 
taneous image y, or searching for the point on the spline 
which is the nearest to the projected point. As every point 
q is associated with the position parameters, we can make 
an estimation of the current position. The standard method 
to recover the parameters is to project the image vector onto 
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the eigenspace [7]: 

q j ( y )  =< y ,e j  >; j = 1 . .  . p  . (1) 

However, this way of calculation of parameters is non- 
robust and thus not accurate in the case of noisy or occluded 
data. If we imagine a mobile robot roaming around with 
a model acquired under a set of stable conditions, every 
change in the environment, such as displaced objects, peo- 
ple walking around etc., can result in severe occlusions with 
respect to the original stored images. 

To overcome this problem, we propose to use the robust 
approach [ 5 ] ,  that, instead of using the whole image vectors, 
generates and evaluates a set of hypotheses r as subsets of 
image points r = ( r l ,  7-2,. . . , r k ) .  In fact, the coefficients 
can be retrieved by solving a set of linear equations on k = 
n points: 

zri = 2 qj (x)e j r ,  1 5 i 5 n . ( 2 )  
j=1 

The principle of such computation is illustrated in Fig. 3. 

= q l  -... 

= ql 0' +q2 0' + q 3  0' +... 
Figure 3. Calculating the coefficients from a 
set of linear equations. 

Figure 4. Image at 60% occlusion. Crosses 
denote the points that contribute to the gen- 
eration of a hypothesis. 

By selecting only p ,  p 5 n eigenimages as our basis, 
we cannot use the previous set of equations, but we rather 
try to solve an over-constrained system in a robust way, so 
that the solution set of parameters minimizes 

We solve the system on k ,  k > p points, where k is sig- 
nificantly smaller than the total number of image points. 
The set of points is randomly selected and due to the ro- 
bust solving of the equation, only the points on which the 
error is arbitrary small contribute to the computation of the 
parameters. As we can see in Fig. 4, at this stage most of 
the points in the occluded regions are excluded from the 
computation. 
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Figure 5. Localization on an imaginary path 
of 100 images. 

To increase the probability of avoiding points that are 
noise or represent occlusion, several different hypotheses 
are generated. A hypothesis consists of a set of parame- 
ters, an error vector E calculated as the squared difference 
between the data and the reconstruction, and the domain 
of compatible points that satisfy an error margin constraint. 
These hypotheses are then subject to a selection procedure, 
based on the Minimal Description Length principle, as de- 
scribed in [ 5 ] .  
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Figure 6. Mean error of localization for the 
standard and for the robust method. 
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Figure 7. Localization on an imaginary path of 
100 images at 60% occlusion. Left: standard 
method; right: robust method. 

the standard and the robust method of coefficient retrieval 
perform almost equally well regarding precision. In fact, as 
it can be seen from the graph in Fig. 6, the mean error of the 
localization is between 11 cm and 13 cm for 0% occlusion. 
The performance of the robust estimator may vary slightly 
since the hypothesis generation includes a stochastic step. 

The performance of both methods at higher levels of oc- 
clusion noise is compared in Fig. 6. We can see a significant 
improvement in precision as a result of applying the robust 
method. Even in situations of severe occlusion when more 
than half of the surrounding is invisible, the robust method 
retrieves positions that are reasonably close to the correct 
ones. This can be clearly seen in Fig. 7. On the left we 
can see that the standard method breaks under ambiguity 
of the data while the results of the robust estimator on the 
right show quite regular localization results with mean error 
under 60 cm. 

5. Conclusion 

In this paper we presented a method for robust view- 
based localization using panoramic images. As our experi- 
ments show, we can perform relatively accurate localization 
by using a pure view-based model of a pre-learned environ- 
ment. By applying a robust framework to the recognition 
phase we can also achieve a significant improvement of per- 
formance when occlusions or noise are present in the input 
images. If we consider a scenario of a mobile robot in an 
office environment, the expected levels of noise seem ac- 
ceptable for the algorithm. 

We are currently exploring the problem of robustness in 
the learning phase and incremental on-line building of mod- 
els of the environment. 
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