CAST: Middleware for Memory-Based Architectures*

Nick Hawes and Marc Hanheide
Intelligent Robotics Lab,
School of Computer Science,
University of Birmingham, UK
{n.a.hawes, hanheidm} @cs.bham.ac.uk

Introduction

This short paper provides a high-level overview of the CoSy
Architecture Schema Toolkit (CAST) (Hawes and Wyatt
2010; Hawes, Zillich, and Wyatt 2007). It discusses the
goals the development of CAST has tried to achieve, its de-
sign, and the philosophy which underlies it.

Goals

CAST was developed to satisfy two related needs in a
large-scale integrated systems project': the need to rapidly
develop robot architectures using a large number of het-
erogeneous components (often written in different lan-
guages) working across multiple modalities; and the need
to maintain a close relationship between the design of an
information-processing architecture (or cognitive model)
and its implementation in software. Whilst the latter of these
motivates CAST from a scientific perspective, it is the for-
mer which is of more interest to the robotics middleware
community. However CAST is not general-purpose mid-
dleware. Instead it naturally supports a number of tuple-
space-inspired component interaction patterns with a partic-
ular focus on knowledge-intensive (as opposed to sensory-
motor) scenarios. As such it has seen most use in scenarios
where system behaviour requires high-level processing such
as planning, reasoning, language processing etc. in addition
to the more traditional robotic subsystems (such as localisa-
tion, navigation, vision, manipulation etc.).

Design

The basic architectural unit in CAST is a component. Com-
ponents are not attached to each other directly. Instead they
are connected to working memories. Components use work-
ing memories to exchange information in the form of ob-
jects. This is done in a manner comparable to the tuple-
space paradigm (e.g. (Gelernter 1985)). Each component is
able to add new objects to working memory, and overwrite
and delete objects which already exist. These working mem-
ory operations generate change events which are broadcast

*This research was supported by the EU FP7 IP “CogX: Cogni-
tive Systems that Self-Understand and Self-Extend” (ICT-215181)
Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1COSy: http://cognitivesystems.org

<<subarchitecture>>
Subarchitecture 2

<<subarchitecture>>
Subarchitecture 1

<<component>>: Working Memory O
>+structure 1

(y—— Component 1
exml | oy cparaton 3 a2)
b B> event

interface | /e
+insert() sink
| +delete()
I +overwrite() Working Memory (
<<component>> *query() Q
1 L3
Component 2 +structure 2
/A notification 1 T
T\J 3
event +insert()
<<component>>" sink +delete()
+overwrite()
notification 2 +query()

memory operation 1

<component>>;
~,| Component4

o—H
extermal | | Component3 |
interface O
event
sink

Figure 1: CAST’s basic processing schema

throughout the architecture. Components can subscribe to
events based on the operations they describe (e.g. what the
operation was, who performed it, what object and datatype it
was performed on etc.). On receiving a change event, a com-
ponent can use the information it contains to access the ref-
erenced object on working memory and perform further pro-
cessing. All components run in parallel and working mem-
ory operations are asynchronous (although change events
can provide synchronisation within processing chains).

A working memory and its attached components are re-
ferred to as a subarchitecture. A single CAST system can
be composed of one or more subarchitectures. Communi-
cation between subarchitectures is mediated by the working
memories. In CAST systems subarchitectures typically (but
not necessarily) group together components which process
information for a single modality (e.g. vision) or system
function (e.g. planning). This produces working memo-
ries which only contain certain types of information, thus
providing the potential for domain-specific memory-based
processing. In general, subarchitectures allow design- and
run-time modularity to be enforced in a system, and provide
the basis for run-time optimisations (cf. (Hawes, Wyatt, and
Sloman 2009)). The relationships between the parts of a
CAST system are pictured in Figure 1.

By eschewing direct connections between components,
and instead following an event-based approach?, CAST sys-

2For an overview of event-based systems in robotics
see: http://projects.ai.techfak.uni-bielefeld.
de/ebs-ro/ .

tems are inherently loosely coupled. This provides flexibil-
ity when developing systems: components can be developed
and debugged in isolation before being added to a subarchi-
tecture, subarchitectures can be developed and debugged in
isolation before being combined into larger systems.

Philosophy

There are two key ideas that inform the development and us-
age of CAST. The first is that the most important part of an
integrated system is the information it processes. Focusing
system design and development on evolution of information
on working memories raises the level of abstraction of inte-
gration to a level which is well-suited for to the development
of complex intelligent systems (as opposed to, e.g, financial
software). On an engineering level, the focus on information
and working-memory operations allows us to jointly manage
data- and control-flow between components. Overall, using
CAST enables information-driven integration, the benefits
of which are explored by Wrede et al. (Wachsmuth et al.
2005; Wrede 2008).

The second key idea behind the development and usage
of CAST is that many processing tasks that must be carried
within an intelligent system are best designed and imple-
mented as processes where multiple components collabora-
tively refine shared information in parallel. In this approach
the result of processing by one component is available to all
other related components, allowing them to behave accord-
ingly. This is in contrast to a pipeline model where informa-
tion is passed from one component to the next which then
processes it in isolation.

We find that these two keys ideas are a natural fit with
a system design approach that follows a memory metaphor.
CAST working memories provide an interface for informa-
tion storage, retrieval and change notification. These mech-
anisms define the language programmers use to develop
CAST systems and provide a common view on all opera-
tions that take place within the system. Following this, we
see CAST as a member of the class of memory-based archi-
tectures. This class also includes middleware such as Active
Memory (Wrede 2008), blackboard architectures, and ar-
guably production systems-based cognitive modelling tools.

Features

The CAST software framework supports the creation and
deployment of distributed, memory-based architectures
from components in both C++ and Java. It is built on top
of Zero C’s Ice middleware?, allowing communication be-
tween languages and machines to occur transparently. All
object types shared on working memory must be defined in
an interface definition language prior to use. Objects are
identified within CAST using a unique key, and working
memory access is comparable to using a hash-table. Ob-
jects on working memory are protected from corruption us-
ing an “invalidate on write” consistency model (Coulouris,
Dollimore, and Kindberg 2001). Access to them can be con-
trolled and synchronised using an ownership and locking

*http://www.zeroc.com/ice.html

mechanism. System configuration is performed via a de-
scription file which is processed to instantiate components
and connect them to working memories. CAST is available
under LGPL license, and has recently passed 1000 down-
loads on Sourceforge. It is built using industry-standard
tools such as Ice, Boost, Log4J and LogdCXX. For more
information visit http://www.cs.bham.ac.uk/go/
cast and see previous work e.g. (Hawes and Wyatt 2010;
Hawes, Zillich, and Wyatt 2007).

Conclusion

In conclusion, CAST is a middleware framework which is
well-matched for problems inherent in developing intelli-
gent systems to perform high-level reasoning using a col-
lection of heterogeneous subsystems. Its memory-based,
information-focused processing model supports the creation
of loosely coupled, flexible systems and facilitates the de-
velopment of complex integrated systems for use in both
robotics and intelligent systems research. To date CAST has
been used to develop robot systems capable of a variety of
functions including table-top manipulation and human-robot
interaction (Hawes et al. 2007), and self-motivated explo-
ration and mapping (Hawes et al. 2010).

References

Coulouris, G.; Dollimore, J.; and Kindberg, T. 2001. Dis-
tributed Systems: Concepts and Design. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., third edi-
tion.

Gelernter, D. 1985. Generative communication in linda.
ACM Trans. Program. Lang. Syst. 7(1):80-112.

Hawes, N., and Wyatt, J. 2010. Engineering intelligent
information-processing systems with CAST. Adv. Eng. In-
form. 24(1):27-39.

Hawes, N.; Sloman, A.; Wyatt, J.; Zillich, M.; Jacobsson,
H.; Kruijff, G.-J.; Brenner, M.; Berginc, G.; and Skocaj, D.
2007. Towards an integrated robot with multiple cognitive
functions. In AAAI 2008, 1548 — 1553.

Hawes, N.; Hanheide, M.; Sjoo, K.; Aydemir, A.; Jensfelt,
P.; Gobelbecker, M.; Brenner, M.; Zender, H.; Lison, P,
Kruijff-Korbayov, I.; Kruijff, G.-J. M.; and Zillich, M. 2010.
Dora The Explorer: A motivated robot. In AAMAS 2010.
Demo track. To appear.

Hawes, N.; Wyatt, J.; and Sloman, A. 2009. Exploring de-
sign space for an integrated intelligent system. Knowledge-
Based Systems 22(7):509 — 515.

Hawes, N.; Zillich, M.; and Wyatt, J. 2007. BALT & CAST:
Middleware for cognitive robotics. In IEEE RO-MAN 2007,
998 — 1003.

Wachsmuth, S.; Wrede, S.; Hanheide, M.; and Bauckhage,
C. 2005. An active memory model for cognitive computer
vision systems. KI-Journal, Special Issue on Cognitive Sys-
tems 19(2):25-31.

Wrede, S. 2008. An Information-Driven Architecture for
Cognitive Systems Research. Ph.D. Dissertation, Bielefeld
University.

