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Abstract

Coastal water autonomous boats rely on robust percep-
tion methods for obstacle detection and timely collision
avoidance. The current state-of-the-art is based on deep
segmentation networks trained on large datasets. Per-pixel
ground truth labeling of such datasets, however, is labor-
intensive and expensive. We observe that far less informa-
tion is required for practical obstacle avoidance – the loca-
tion of water edge on static obstacles like shore and approx-
imate location and bounds of dynamic obstacles in the wa-
ter is sufficient to plan a reaction. We propose a new scaf-
folding learning regime (SLR) that allows training obstacle
detection segmentation networks only from such weak anno-
tations, thus significantly reducing the cost of ground-truth
labeling. Experiments show that maritime obstacle segmen-
tation networks trained using SLR substantially outperform
the same networks trained with dense ground truth labels.
Thus accuracy is not sacrificed for labelling simplicity but
is in fact improved, which is a remarkable result.

1. Introduction
Autonomous boats are an emerging research area with

significant application potential in cross-ocean cargo ship-
ping, coastal environment control and man-made structure
inspection. Their autonomy crucially depends on percep-
tion capability, which is particularly challenging in environ-
ments like coastal waters, marinas, city canals and rivers.
There, the appearance of the navigable area – the water –
significantly varies with weather conditions, surroundings,
contains mirrored reflections of land and sun glitter. The ap-
pearance of potential obstacles is equally broad. Obstacles
may be static (e.g. shore and piers) or dynamic (e.g. boats,
swimmers, debris, buoys).

The current state-of-the-art approaches in maritime ob-
stacle detection harness the power of deep models [6, 41,
36] to capture the significant appearance variability and seg-
ment the onboard-captured RGB images into water, sky
and obstacle classes (Figure 1). These methods are cur-

dynamic
obstacles

water edge

obstacles

sky

water

Dense labels

Annotation time: 
~20 minutes

Annotation time: 
~1 minute

Tr
ai

ni
ng

 d
at

a 
la

be
ls

Pr
ed

ic
tio

ns
 o

n 
te

st
 d

at
a

Weak annotations (our)

Figure 1: The proposed scaffolding learning regime allows
training a segmentation network using weak annotations
(upper right) without hampering the segmentation quality
in aspects important for the obstacle detection task (bottom
row), thus avoiding the need for laborious dense per-pixel
labeling of training images (upper left).

rently trained on carefully manually labeled segmentation
datasets [8], the annotation of which is laborious, error-
prone and costly.

Furthermore, obstacle avoidance does not require
equally high segmentation accuracy in all image regions.
For example, detecting the boundary between water and
shore is crucial for collision prevention, while accurate seg-
mentation of the shore-sky boundary is meaningless from
the perspective of obstacle avoidance. Similarly, missing
a few edge pixels on a swimmer will not cause a colli-
sion. But falsely classifying isolated patches of water pix-
els in front of the boat as obstacles will detrimentally af-
fect the control, causing frequent unnecessary stops. This
is reflected in recent marine benchmarks [9], where perfor-
mance is evaluated in terms of dynamic obstacle detection
and water-edge estimation accuracy, while the segmentation
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accuracy beyond the water-obstacle boundary is ignored.
The information meaningful for obstacle avoidance can

thus be encoded by water-obstacle boundaries of static ob-
stacles (we refer to these simply as water edges in the
following) and by bounding boxes to denote the location
and extent of dynamic obstacles. This raises the question
of whether this simpler task-oriented annotation procedure,
which takes less than a minute per image, can be lever-
aged for training segmentation networks, replacing labour-
intensive per-pixel labeling, which typically takes over 20
minutes per image [8].

We demonstrate that weak annotations can indeed form
strong constraints on the pixel labels. For example, all pix-
els below a water edge can be labelled as water except those
within obstacle bounding boxes. Similarly, pixels above the
horizon, which can be estimated from the on-board inertial
measurement unit (IMU) measurements [5], may be obsta-
cles or sky, but not water. These constraints can be extrap-
olated to generate partial labels, which are dense in some
regions while remaining ambiguous regions can be ignored
during training.

A typical encoder-decoder network trained from such
partial (i.e. incomplete) labels cannot be expected to reach
the desired accuracy since the labels are not sufficient to
learn domain-specific context priors in the decoder to con-
solidate the encoder features and refine the segmentation.
However, we hypothesize that these labels are sufficient to
learn powerful domain-adapted visual features in the en-
coder. The learned features can in turn be leveraged for
estimating the labels of ambiguous regions of the partial la-
bels.

Based on these observations, we propose a scaffolding
training regime (SLR) which is our main contribution. It
avoids the need for manually annotated per-pixel segmen-
tation labels, while simultaneously directing the network
to focus on learning segmentation relevant for the down-
stream obstacle avoidance task. It utilizes the constraints
from the ground-truth water edge, obstacle bounding boxes
and estimated horizon to improve the encoder features. Fea-
tures are in turn used to refine the unlabeled regions of
the constraints-generated partial labels. Experimental re-
sults on the currently most challenging maritime obstacle
detection dataset [9] show that models trained using SLR
outperform models classically trained from full dense an-
notations, which is a remarkable result. To the best of our
knowledge, this is the first method for training obstacle de-
tection from weak annotations in the marine domain which
surpasses fully supervised training from dense labels.

2. Related work
In this section, we review the most recent works in mar-

itime obstacle detection (Section 2.1) and overview label-
efficient training methods for deep visual models (Sec-

tion 2.2).

2.1. Maritime obstacle detection

Similarly to the autonomous ground vehicles (AGV) do-
main, perception in marine robotics has been dominated by
deep convolutional neural networks (CNNs) in recent years.
Several works applied [23, 31, 41] or slightly extended [28]
general object detection models [34, 14] from other do-
mains to the aquatic domain for the detection of different
types of ships. While these approaches achieve state-of-the-
art results on the specific task of ship detection, they do not
address general dynamic obstacles (e.g. buoys, swimmers,
debris) and static obstacles (e.g. shore, land, piers, mooring
posts). The latter are especially problematic for obstacle de-
tection methods as they cannot be appropriately interpreted
as objects.

State-of-the-art methods thus address the general obsta-
cle detection by semantic segmentation. Recent works [8,
10] apply well-established semantic segmentation models
from the AGV domain [45, 12] to the marine domain and
outperform previous hand-crafted methods [21, 7, 5], but
still perform poorly on reflections and small obstacles. Sev-
eral works thus improve performance by maritime-domain-
specific modifications of deep architectures [20, 36]. No-
tably, [6] estimate the horizon location in the image from
an onboard IMU and propose an encoder-decoder architec-
ture that fuses the inertial information with the RGB im-
age for accurate semantic segmentation. This architecture
significantly improves obstacle detection and represents the
current state-of-the-art in the field.

2.2. Reducing the annotation effort

One of the bottlenecks in the development of deep seg-
mentation models is their reliance on large amounts of ac-
curately labeled training data. Unlike in the more mature
AGV domain, only a few (relatively small scale) segmenta-
tion datasets exist in the autonomous boats domain [8, 31],
which hampers development. In contrast, datasets with
weaker forms of annotation (e.g. bounding boxes) are much
more common [21, 33, 32, 7].

Recently methods for annotation-efficient training have
emerged, which focus on achieving the best model perfor-
mance for the least amount of manual annotation effort.
Semi-supervised methods [35, 17, 18, 30] utilize a small
set of images with dense annotations and a large set of un-
labeled images to capture the diversity of the data and thus
improve segmentation performance. However, as the an-
notation effort is mainly reduced by labeling fewer images,
such methods are more sensitive to labeling errors and can
only capture limited visual variation of open-ended classes
like obstacles.

Alternatively, instead of reducing the number of labeled
images, weakly supervised methods reduce the annotation
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Figure 2: The proposed scaffolding approach SLR is comprised of three steps, denoted by red, green and blue arrows. First
the model is warmed-up using constraint-generated partial labels (red). Dense pseudo labels are estimated by completing the
unknown regions in partial labels by softmax over similarity with instance prototypes computed from the warmed-up encoder
(green). Finally, the network is re-trained by the dense pseudo labels (blue).

effort by using weaker forms of labels. In the segmentation
domain, approaches like scribbles [24, 38, 43], point anno-
tations [3, 29, 2] and image-level labels [40, 16, 1, 39] have
been explored.

Among them, bounding boxes are relatively easy to an-
notate, while providing an informative constraint on the ob-
ject bounds. Their ubiquitous presence across various per-
ception datasets and domains makes them an ideal candi-
date for weakly supervised learning. Thus several works
investigated bounding boxes as a viable constraint for tasks
such as semantic segmentation [13, 22], instance segmenta-
tion [19, 15, 37] and video object segmentation [4, 44].

These approaches mainly focus on the segmentation of
foreground objects that can be well approximated by bound-
ing boxes. However, obstacle detection for AGVs or un-
manned surface vehicles (USVs) also requires accurate esti-
mation of boundaries between background classes (e.g. wa-
ter edge, road boundary), where such approaches cannot be
applied. In contrast, our proposed scaffolding method is
able to ef�ciently learn background classes boundaries as
well, utilizing the information from water-edge annotations
and the estimated horizon location.

3. Learning to segment by scaffolding

At a high level, our scaffolding learning regime (SLR)
gradually improves the trained model by iterating between
improving the network parameters (i.e. training) and im-

proving the dense pseudo labels. In practice, the learning
is unfolded into three steps (Figure 2). In the �rst step (i.e.
feature warm-up) the network is trained using partial labels
– weak annotations and domain constraints are used to label
parts of the image, while other regions remain unlabeled. In
the second step, dense pseudo labels are generated by es-
timating the most likely values of labels for unknown re-
gions in partial labels from domain-speci�c visual features
learned by the network during the warm-up phase. Finally,
the network is re-trained with the estimated dense pseudo
labels. These three steps are detailed in Section 3.1, Sec-
tion 3.2 and Section 3.3.

3.1. Feature warmup

The purpose of the feature warm-up step is to learn
domain-speci�c encoder features and initial decoder pre-
dictions. To achieve this, we supervise the network in a
weakly supervised way. Speci�cally, combining domain
knowledge and weak annotations, we can label certain re-
gions of an input imageI 2 RW � H � 3 with high con�-
dence, while others remain unlabeled, producing partial la-
bels �Y 2 [0; 1]W � H � 3 (Section 3.1.1), which can be used
to supervise the model through a standard segmentation loss
(Section 3.1.2).
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