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Abstract

This paper focuses on applying and evaluating the addi-
tional hypothesis verification step for the detections of learnt-
hierarchy-of-parts (LHOP) method. The applied method
reduces the problem of false positives that are a common
problem of hierarchical methods specifically in highly tex-
tured or cluttered images. We use a Histogram of Com-
positions (HoC) with a Support Vector Machine in hypoth-
esis verification step. Using HoC descriptor ensures that
the additional computation cost is as minimal as possible
since HoC descriptor shares the LHOP tree structure. We
evaluate the method on the ETHZ Shape Classes dataset
and show that our method outperforms the original base-
line LHOP method by around 5 percent.

1 Introduction

In the field of computer vision many different approaches
have been proposed for solving the problem of object de-
tection. One of the most effective and popular approach
is using sliding windows. This approach slides a window
across the whole image to create a dense set of regions from
which features, such as HOG [2] or SIFT [11], are extracted
and classified into a known object category. The most suc-
cessful method based on this approach has been proposed
by Felzenszwalb efal. using the discriminative deformable
parts models [5]. This model is based on HOG features
and utilizes a constellation-like approach to describe each
object representation as two-level filter. While this method
produces state-of-the-art results on PASCAL datasets [4],
its main problem is rooted in the sliding windows approach
which requires extensive computational resources to verify
hundreds of thousands of regions per single image.

To avoid sliding windows many hierarchical models [9,
10, 14] have proposed to build detections from bottom-up
approach in a layer-by-layer manner. This approach en-
sures that only simple features of lower layers are extracted
over the whole image while at higher layer more complex
shape representations of object categories are being used
only from the most important parts of the image. Addition-
ally, the hierarchical methods allow for sharing of parts [7]
within their hierarchical structure thus allowing for more
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Figure 1: Applying the hypothesis verification to the learnt-
hierarchy-of-parts (LHOP) detections. As hypothesis veri-
fication we utilize Histogram of Compositions that uses the
same hierarchical model as LHOP method.

compact representation of object categories. Across multi-
ple categories this positively affects detection speed. When
a common shape is found in the lower layers of the hier-
archies the detected shape can be reused in detection of
multiple categories in higher layers that share this common
shape. Compared to the current state-of-the-art methods the
Achilles heel of such hierarchical methods is poorer per-
formance. The problem is rooted in the bottom-up object
inference where the inference process does find the correct
object in the image, but at the same time it also halluci-
nates objects in highly textured or highly cluttered images.
This produces many false positive detections that result in
poorer performance as they cannot be easily removed by
simple thresholding. To address the problem of false pos-
itive detections we can utilize the hypothesis verification
step introduced by [13].

In our paper we apply hypothesis verification step to
the hierarchical method (see, Figure 1) and as our contri-
bution we show the performance of using this method on
the ETHZ Shape Classes [6] dataset. The hypothesis veri-
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Figure 2: Models from object layer of LHOP method for five different categories of the ETHZ Shape Classes dataset.

fication step is applied after hierarchical method produces
detections. We compute descriptor from the regions of the
hypothetical object and use Support Vector Machine to ver-
ify the validity of this region. As a descriptor we use His-
togram of Compositions (HoC) [12]. This descriptor al-
lows us to have a fully integrated framework since HoC
descriptor is composed from the same hierarchical tree as
detected objects. The benefit of HoC is that it uses only
lower layer shapes which have more discriminative infor-
mation than upper layer object shapes from detections. We
show that by using this discriminative information we are
able to eliminate false positive detections and improve final
performance of the hierarchical method.

The remainder of the paper is structured as follows. In
Section 2 we provide formal description of using hypothe-
sis verification with HoC descriptor, in Section 3 we present
results and we conclude with the discussion in Section 4.

2 Hypothesis verification

We utilize the learnt-hierarchy-of-parts model (LHOP) [9]
to produce hypothetical object detection. The same model
is also used by the HoC descriptor that we apply in the hy-
pothesis verification step. This allows us to use the same
hierarchical tree for obtaining detections and for produc-
ing HoC descriptor. Although we use the same hierarchi-
cal model that produced false positive detections we con-
struct HoC descriptor from simpler lower layer shapes that
contain more discriminative information then upper layer
shapes used for object detection. The higher layer objects
are composed from lower layer shapes with response value
only above certain threshold. This eliminates construction

of noisy high level shapes with low response values but it
also removes some of the discriminative information that is
present in the lower layer parts. We can now bring this dis-
criminative information back into the object detection by
using them in our hypothesis verification step.

2.1 Detection with learnt hierarchy of parts

We now provide a simple notation for LHOP model, while
we refer reader to [9] for further details. In the following we
will denote the library of hierarchical parts trained for up to
L layers as a set of N compositions £ = {P'};—1. , where
P! is an identifier of i-th composition and belongs to the 1-th
layer of the library. At the last layer L, in our case 6 lay-
ers were enough to capture complexity in categories, each
composition directly identifies one trained category, i.e. for
each category we have only one corresponding composi-
tion on the L-th layer. Applying the library £ on a given
image Z, the algorithm of hierarchical model infers a set of
K detected parts, C(Z, L),

C(I, E) = {ﬂ-é}k:l:Ka

where the k-th detected part on the I-th layer 7. = [Py, cr, , Ak]

is defined by its library identifier P!, its location ¢, in the
image and its detection score Ay . All the inferred parts
from the last layer L directly correspond to detected objects
in the image:

D(Z,L) = {7} }i=1.0,

where D(Z, L) is a set of J detected objects in the im-
age Z processed with the library £. While each detected
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Figure 3: Detection rate over different FPPI rates (false positives per image) for each category from the ETHZ Shape
Classes dataset. We ran five iterations and sampled examples randomly in each iteration to obtain different training/testing

splits.

object is defined the same as detected part at L-th layer
7} = [P}, cx;, \j], we can also add a category informa-
tion since a library identifier PjL from the L-th layer always
directly matches to one learning category. We can also ob-
tain a bounding box location of detected object simply by
tracing down sub-parts of detected part 7er to the first layer.
Minimal and maximal locations of all traced sub-parts de-
fine a bounding box of detected image. We can therefore
define a set of detected objects from a given image Z as:

D(ZT,L) ={(7},cj,7)}j=10,

where c¢; is detected category and r; = (z,y,w,h) is a
detection bounding box.

2.2 Hypothesis verification with HoC descriptor

For each detected object D(Z, L) we can obtain category
information c¢; and detected bounding box r;. Within a
bounding box r; we calculate a HoC descriptor H; from
detected parts of second and third layer. In [12] the authors
use library pre-trained on a general set of images but since
the HoC descriptor incorporates the same LHOP model as
we use for the detection we can easily compute descriptor
on the same library of compositions. This also eliminates
the time required to reprocess the image with different li-
brary. All computed descriptors #; are then filtered by the
Support Vector Machine with a category model c;. As the
final step we perform a non-maximum suppression using a
greedy approach.

3 Experiments and results

We evaluated the method on the ETHZ Shape Classes [6]
dataset and compared it to the results of the original base-
line method of LHOP from [8]. We repeated the exper-
iments five times, independently for each category, using
the following procedure: half of the images that contained
the selected category where randomly chosen for the train-
ing, while the other half were used for the testing only. All
other images that did not contain category objects where
used only for testing. Selected category training images
were used to train LHOP library £ for up to 6 layers (see,
Figure 2). To train SVM for the selected category we ex-
tracted object regions from training images and computed
HoC descriptor H; for positive examples. The training ob-
jects were scaled to 120 pixel wide regions. We collected
negative examples by running LHOP with trained library £
on training images to produce HoC descriptor from hypo-
thetical detections. The training images for negatives were
first resized by a factor of 1.2 and then scaled by a factor of
/2 to produce around 4-7 scales per image (the same scal-
ing procedure was followed during the testing stage). As
hard-negatives we used all detections that had PASCAL in-
tersection criteria with the ground truth less then 0.3 and as
additional positive examples we used all detections with in-
tersection criteria of more then 0.7. Due to a small number
of training images from the ETHZ dataset we also sampled
Caltech-101 [3] dataset for additional hard-negative exam-
ples. On average we used around 40 000 negative examples



| Applelogo | Bottle | Giraffe | Mug [ Swan | Average
LHOP only [8] (baseline) 88.2(3.4) | 87.6 (1.5) | 83.5(1.1) | 86.1(2.0) | 80.0(3.5) 85.1
LHOP + HoC verification (our) | 98.2 (2.5) | 84.5(7.1) | 90.5(1.2) | 89.7 (4.2) | 89.0 (5.2) 90.4

Table 1: Evaluation result on ETHZ Shape Classes with reported detection-rate (%) at 0.4 FPPI averaged over five iterations

(standard deviation values are shown in parentheses)

and 500 positive examples. Support Vector Machine was
implemented using LIBSVM [1] with an RBF kernel using
chi-squared distance function (RBF-X?).

3.1 Results

Summary of detection rates are reported in Table 1 with ad-
ditional detection-rate versus FPPI curves for all categories
across different iterations in Figure 3. We compared our
results to the baseline results of [8]. Their method used
only LHOP models from object layers with simple thresh-
old filtering to produce the best possible results. Based on
the reported results we notice considerable improvements
across all five categories. Hypothesis verification outper-
formed baseline method for all categories except for the
bottle. The performance drop for this category was 3 per-
cent but due to high standard deviation the difference is not
significant. On average, our method performed by around 5
percent better then baseline LHOP method, producing de-
tection rate of 90.4 percent versus 85.1 percent for LHOP
at 0.4 false positives per image (FPPI).

4 Conclusion

In this paper we have applied additional hypothesis veri-
fication step to the hierarchical methods. Specifically we
used learnt-hierarchy-of-parts (LHOP) model [9] for object
detection and applied Histogram of Compositions [12] de-
scriptor on detected hypothetical objects. Using discrimi-
native information from HoC descriptor in Support Vector
Machine we were able to eliminate many false positive de-
tections that are commonly occurring in highly textured or
cluttered images. We have demonstrated the performance
on the ETHZ Shape Classes [6] dataset where we outper-
formed baseline LHOP method by 5 percent and achieved
detection-rate of 90.4 percent at 0.4 false positives per im-
age.

In future work we plan on evaluating this method on
bigger datasets (e.g. PASCAL) and comparing it to other
state-of-the-art methods. Additionally, we would also like
to apply more texture based descriptors such as local-binary-
pattern as the current descriptor is mostly shape oriented.
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