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Abstract—We propose a new method for a supervised
online estimation of probabilistic discriminative models
for classification tasks. The method estimates the class
distributions from a stream of data in form of Gaussian
mixture models (GMM). The reconstructive updates of
the distributions are based on the recently proposed
online Kernel Density Estimator (oKDE). We maintain the
number of components in the model low by compressing
the GMMs from time to time. We propose a new cost
function that measures loss of interclass discrimination
during compression, thus guiding the compression towards
simpler models that still retain discriminative properties.
The resulting classifier thus independently updates the
GMM of each class, but these GMMs interact during
their compression through the proposed cost function. We
call the proposed method the online discriminative Kernel
Density Estimator (odKDE). We compare the odKDE to
oKDE, batch state-of-the-art KDEs and batch/incremental
support vector machines (SVM) on the publicly-available
datasets. The odKDE achieves comparable classification
performance to that of best batch KDEs and SVM,
while allowing online adaptation from large datasets, and
produces models of lower complexity than the oKDE.

Index Terms—Online discriminative models , probability
density estimation , Kernel density estimation , Gaussian
mixture models.

I. INTRODUCTION

Building discriminative models (classifiers) from
streams of data is a central task of many applications
in machine learning. In real-world environments, we
may want to observe some process for an indefinite
duration, while continually providing the best estimate
of the model from the data observed so far. This gen-
erates the need for models that can be constructed in
an online operation. In a strict online operation, we
observe each data-point only once, update our model
and then discard that data-point. Note that, to prevent an
unbounded increase of the memory (and computational)
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requirements of the method, the data discarding is of
crucial importance.

From a Bayesian perspective, we could construct
an optimal classifier if we knew the exact underlying
probability density functions (pdf) from which the data
are sampled. In this respect, parametric reconstructive
models based on the Gaussian mixture models, (GMM),
(e.g., [1], [2], [3]) have been successfully applied in
batch operation, i.e., in situations in which all the data is
observed in advance. However, extension of the GMMs
to online operation is not a straightforward task. Another
drawback of the GMMs is that a bound on the number
of components has to be specified in advance [1], [4],
[3]. Improper choice of the number of components,
may lead to models which fail to capture the complete
structure of the underlying pdf and decrease the clas-
sifier’s performance. In this paper we address the issue
of online construction of a classifier through a Gaussian
mixture model in which the complexity (the number of
components) is automatically adjusted by considering
the classifier’s discrimination properties. The resulting
method is called the online discriminative Kernel Density
Estimator (odKDE).

A. Related work

An appealing property of the non-parametric methods,
such as Parzen kernel density estimators (KDEs) [5],
[6], is that they alleviate the problem of specifying
the number of components in the GMM. They achieve
this by treating each observation as a component in the
mixture model and assuming all components have equal
bandwidths (covariance matrices in case of Gaussian
kernels). Indeed, several authors, e.g., [7], [8], [9], [10],
[11], [12], have recently reported excellent performance
of the KDE-based classifiers. The only free parameter
in the KDEs is the bandwidth, and automatic estimation
of this parameter is an active research area with many
proposed solutions, e.g., [13], [14], [7], [15], [12].

While parameter-free estimation is attractive as such,
the main drawback of the KDE-based methods is that
model’s complexity increases linearly with the observed
data-points. To deal with this problem, several methods
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have been proposed to reduce the number of components
(compress the model) either to a predefined value [16],
[17], or to optimize some data-driven criteria [18], [19],
[20], [21], [15]. Alternatively, Ozertem et. al. [22] have
formulated the model compression as a clustering prob-
lem which can be solved through a mean-shift-based
detection of modes in the estimated distribution. Re-
cently, Rubio and Lobato [9] applied the non-stationary
bandwidths from [7] to the compressed distribution, and
reported improved performance.

Adapting batch methods to enable online operation is
a nontrivial task. In contrast to the batch incremental
models (e.g., [23], [24], [25]), who store and revisit
all the data in multiple passes, the online models have
to adapt from a (single) new data-point and then dis-
card that data-point. The main difficulty therefore lies
in maintaining sufficient information in the estimated
models to generalize well to the yet unobserved data and
adjusting their complexity as well as parameters without
having access to all the observations simultaneously
(future as well as past). There have been various attempts
to extend the reconstructive GMMs to online opera-
tion, however, these either imply strong spatio-temporal
constraints on the data [26], [27], assume constraints
on the shape of the target distribution [28] or require
tuning of parameters to a specific application [29]. Priebe
and Marchette [30] proposed an online EM algorithm,
that includes a heuristic for allocating new components.
Kenji et. al. [31] proposed a similar approach to fa-
cilitate efficient online compression of data-streams by
volume prototypes. Recently, we have proposed a non-
parametric approach called the online Kernel Density
Estimator (oKDE) [12]. The oKDE does not impose any
of the above constraints but assumes only that the target
pdf is sufficiently smooth and produces models with a
high reconstructive performance. In [32] we have also
considered a variant of the oKDE that allows adaptation
from positive as well as negative examples. Unlike the
related approaches, the oKDE [12] does not attempt to
build a model of the target distribution directly, but rather
maintains a non-parametric model of the data itself in
a form of a sample distribution. This model can then
be used to calculate the kernel density estimate of the
target distribution. The sample distribution is a mixture
of Gaussian and Dirac-delta functions. Each new data-
point is added to the sample distribution as a Dirac-
delta function and the sample distribution is compressed
from time to time to keep its complexity low. The
compression is implemented by hierarchical clustering,
which approximates clusters of components with single
Gaussians. The compression stops when the distance
between the pdfs before and after compression becomes

too great.

B. Our approach

A straight-forward extension of the oKDE [12] to
online construction of classifiers would be to estimate the
pdf of each class separately by the oKDE and construct
a Bayesian classifer from the class pdfs. However, the
oKDE is agnostic to the fact that we are estimating
the pdfs for construction of a classifier, and completely
ignores the class labels during online estimation of the
pdfs. In fact, the oKDE compresses its class pdfs to
simpler models by constraining the reconstruction loss.
In practice this leads to overcomplex models for the
task of classification. The high complexity has two
undesired effects for the classification. First is the larger
number of the model parameters that the method has
to automatically estimate from the available data. Note
that maintaining the number of components in the model
sufficiently low, has a regularization effect, leading to
smoother between-class boundaries which often result
in improved classification performance [33]. The other
effect is the redundancy of representation, which leads to
redundant computations at classification. Namely, there
is no need for having a detailed generative model in
parts of the feature space that are irrelevant for the
classification. From the classification standpoint, a good
model can be as general as possible in the irrelevant
parts of the feature space and detailed in the parts of the
feature space that are close to the interclass boundary.

We propose a new KDE-based online approach to clas-
sifier estimation, which we call the online discriminative
Kernel Density Estimator (odKDE). In our approach,
we build class-wise pdfs in form of Gaussian mixture
models by taking into account all the classes jointly. The
online operation is composed of two main steps: (i) re-
constructive update and (ii) discriminative compression.
In the reconstructive update, the pdf of each class is
updated independently from the others, similarly to the
reconstructive updates in the oKDE [12]. However, in
the discriminative compression, each class pdf is com-
pressed by taking into account the pdfs of all remaining
classes. We propose a new compression cost function
that measures the changes of the resulting classifier’s dis-
crimination properties during the compression. This cost
function allows each pdf to be compressed as much as
possible as long as the compressed pdf does not induce a
significant change in the classifiers posterior distribution
(interclass boundary region). Our experiments show that
the approach delivers low-complexity classifiers that can
be estimated within the strict online estimation scenario.

Our approach is outlined in Figure 1, which shows
steps in adaptation of a three-class classifier. The pdf
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Fig. 1. Illustration of the main steps in the proposed online
discriminative KDE. The example shows a three-class model in which
the first class is updated by a new observation and compressed. While
the distributions change significantly, the classifier’s posterior does
not.

of each class is modelled by a GMM. A data-point
is observed for the first class and the corresponding
four-component GMM is reconstructively updated into
a new five-component GMM. The second and the third
step illustrate the discriminative compression of the class
1. A two-class classifier is constructed in the second
step. Class 1 represents the positive example class and
the remaining classes are pooled together to form the
negative example class. The positive example class is
then compressed, such that the posterior distribution of
the binary classifier does not change significantly. In
Figure 1 we see that the first two and the last two com-
ponents in the class 1 were compressed and the resulting
GMM was simplified into a three-component model.
This way get the updated and compressed discriminative
model (bottom row in Figure 1).

The remainder of the paper is structured as follows. In
Section II we define our model. In Section III we detail
the oKDE-based reconstructive update and in Section IV
we detail the compression algorithm. In Section V we
define our new cost function that measures the dis-
crimination loss and is designed to fit the compression
algorithm. Section VII contains experimental study of
the approach and we conclude the paper in Section VIII.

II. THE MODEL DEFINITION

Our goal is to estimate a classifier for K classes. In
particular, we want to estimate the pdfs of all classes,
and use these to create a Bayesian classifier. We can
compactly write the classifier at time-step t as

{pt(x|ck), pt(ck)}k=1:K (1)

where pt(x|ck) and pt(ck) are the pdf and the prior
for the class ck, respectively. The prior can be esti-
mated from the frequency of each class in the observed
data. For online construction of the pdfs, we adapt
the paradigm from the online Kernel Density Estimator
(oKDE) [12] in that we continually estimate class-wise
sample distributions. The sample distribution qt(x|ck)
for the ck-th class is modeled by a N ck

t component
mixture of Gaussians,

qt(x|ck) =
Nt

ck∑
i=1

wcki φΣ
ck
si

(x− µcki ), (2)

where

φΣ(x− µ) = (2π)−
d

2 |Σ|−
1

2 e(− 1

2
(x−µ)T Σ−1(x−µ)), (3)

is a Gaussian kernel centered at µ with covariance matrix
Σ, and d is the dimensionality of data-points. At time-
step t, the sample distribution of the class ck is thus
defined by N ck

t triplets of mixture weights, means and
covariances, i.e., {wcki , µ

ck
i ,Σ

ck
si }. The Kernel Density

Estimate of the pdf for the ck-th class is then defined as
a convolution of the sample distribution with a Gaussian
kernel φH

ck
t

(x),

pt(x|ck) = φH
ck
t

(x)∗qt(x|ck) =

N
ck
t∑

i=1

wcki φΣ
ck
i

(x− µcki ),

(4)
where Σck

i = Hck
t + Σck

si , and Hck
t is the bandwidth

(covariance matrix) of the convolution kernel estimated
at time-step t. In the following we will omit the reference
to classes, (·)ck , in interest of clearer notations.

III. ONLINE RECONSTRUCTIVE UPDATE

In this section we will explain the updating of the
pdf for a particular class. Assume that at time-step t we
observe a data-point xt for some class and want to update
its corresponding pdf. If all the data-points are equally
important (i.e., no temporal forgetting is involved), then
the corresponding sample distribution is simply updated
by augmenting it with a Dirac-delta function (a Gaussian
with a zero covariance) centered at xt,

qt(x) = (1− 1

Nt
)qt−1(x) +

1

Nt
φ0(x− xt), (5)
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where Nt = Nt−1 +1 is the number of samples from the
same class observed so far. The updated kernel density
estimate is then defined by

pt(x) = φHt
(x) ∗ qt(x). (6)

A crucial step in all KDE approaches is estimation of the
kernel bandwidth Ht such that the distance between the
KDE pt(x) and the (unknown) underlying distribution,
that generated the data, is asymptotically minimized.
While virtually all approaches to bandwidth estimation
(e.g.,[34], [6], [13], [11], [15]) require access to all data-
points, we have recently [12] proposed a solution that
avoids this restriction and can use a Gaussian mixture
model as defined in (2) instead. Following the derivations
in [12], the bandwidth is calculated as

Ht = Σ̂smp(t)[d(4π)d/2NtR̂]−
2

d+4 , (7)

where Σ̂smp(t) is the covariance of the observed samples
from our class, and R̂ is defined by

R̂ =
N∑
i=1

N∑
j=1

wiwjφA−1
ij

(∆ij)×

[2tr(Σ̂2
smp(t)A

2
ij)[1− 2mij ] +

tr2(Σ̂smp(t)Aij)[1−mij ]
2], (8)

where we have used the following definitions
Aij = (G + Σsi + Σsj)

−1, ∆ij = µi − µj ,
mij = ∆T

ijAij∆ij , G = Σ̂smp(t)((d+ 2)Nt/4)−2/d+4.

IV. COMPRESSION

With the updates in (5), the model’s reconstructive
power increases, however, so does its complexity (i.e.,
the number of components). To maintain the complexity
low, the sample distribution has to be compressed from
time to time. In the interest of clearer notations, we will
leave out the time indexes for now. The objective of the
compression is to approximate the original N -component
sample distribution

q(x) =
N∑
i=1

wiφΣsi
(x− µi) (9)

by a M -component, M < N , equivalent q̂(x)

q̂(x) =
M∑
m=1

ŵmφΣ̂sm
(x− µ̂m), (10)

such that the error induced by the compression does
not increase significantly. Since a direct optimization
(e.g., [32]) of the parameters in q̂(x) can be compu-
tationally prohibitive, and prone to slow convergence
even for moderate number of dimensions, we resort to

a clustering-based approach. The aim is therefore to
identify clusters of components in q(x), such that each
cluster can be sufficiently well approximated by a single
component in q̂(x). Let Ξ(M) = {πm}m=1:M be a
collection of disjoint sets of indexes, which cluster q(x)
into M sub-mixtures. The sub-mixture corresponding to
the m-th cluster is defined as

q(m)(x) =
∑
i∈πm

wiφΣsi
(x− µi) (11)

and is approximated by the m-th mixture component
ŵmφΣ̂sm

(x − µ̂m) of q̂(x). The parameters of the m-
th component are defined by matching the first two
moments (mean and covariance) [35] of the sub-mixture:

ŵm =
∑

i∈πm

wi , µ̂m = ŵ−1
m

∑
i∈πm

wiµ̂i

Σ̂sm = ŵ−1
m

∑
i∈πm

wi(Σsi + µiµ
T
i )− µ̂mµ̂Tm. (12)

We therefore seek a clustering assignment Ξ(M), such
that the number of components in the resulting model
is reduced, i.e., M < N , and that the clustering error
remains sufficiently low:

M̂ = arg min
M

E(Ξ(M)) , s.t. E(Ξ(M̂)) ≤ Dth, (13)

where E(Ξ(M̂)) is the clustering error induced by
clustering assignment Ξ(M̂) with M̂ clusters and Dth

is a bound on that error.

A. Hierarchical compression

In principle, the global optimization of (13) would
require evaluation of all possible cluster assignments
Ξ(M) for the number of clusters M ranging from one to
N , which becomes quickly computationally prohibitive.
A significant reduction in complexity of the search
can be obtained by a hierarchical approach to cluster
discovery.

In our implementation, we therefore first build a den-
drogram among the centers of components in q(x). This
generates a binary tree in which each node represents
one possible local clustering assignment πm (Figure 2).
Starting at the root node, we test if the distribution can be
compressed into a single Gaussian without significantly
increasing the error E(Ξ(M)). If that is not the case, we
descend the tree, which effectively splits the distribution
into a two-Gaussian approximation (one Gaussian per
node). We then iteratively descend further down the tree,
at each step along the node that maximally contributes to
the clustering error E(Ξ(M)). We stop descending the
tree once E(Ξ(M)) falls below a desired threshold. The
corresponding M̂ leafs of the tree represent the clustering
assignments Ξ(M̂) = {πm}m=1:M̂ . Once the clustering
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Fig. 2. Illustration of the hierarchical clustering. The components
of the sample distribution q(x) are hierarchically clustered to form
a tree. Each of the resulting three leafs is approximated by a single
Gaussian and together they form the compressed sample distribution
q̂(x).

Ξ(M̂) is found, the compressed sample distribution q̂(x)
(10) is calculated using (11) and (12) and the correspond-
ing compressed KDE p̂(x) can be calculated using (7)
and (6). An illustration of the hierarchical clustering on
a one-dimensional example is shown in Figure 2.

In order to efficiently implement the hierarchical com-
pression, the cost of compression E(Ξ(M)) should be
written as a sum over local clustering errors, which can
be calculated for each cluster independently from the
others. We propose such a cost function next.

V. DISCRIMINATIVE COMPRESSION COST

Note that the compression error is always evaluated
on the KDEs calculated from the (compressed) sam-
ple distributions. In the following we will assume that
we want to compress the ck-th class pdf p(x|ck) into
p̂(x|ck), while constraining the induced errors in the
classifier. In particular, we want to keep the classi-
fication properties of the class models unchanged as
much as possible. First we have to rewrite this model
into a classification model. We consider the class ck as
a positive example class C+, described by a mixture
model p(C+|x) ∝ p(x|ck)p(ck). Then we collect all the
remaining classes to form a single negative example class
C−, p(C−|x) ∝

∑
j\i p(x|cj)p(cj). The posterior over

the resulting two-class model is then defined as

p(C|x) = δC+(C)p(C+|x) + δC−(C)p(C−|x), (14)

where δC∗(C) is a Dirac-delta function centered at C∗.
The compressed counterpart of the posterior (14), is

Fig. 3. First row shows a reference positive and negative class, along
with the posterior p(C|x). The second and the third rows show a valid
and an invalid compression, respectively.

obtained by setting p̂(C+|x) ∝ p̂(x|ck)p(ck):

p̂(C|x) = δC+(C)p̂(C+|x) + δC−(C)p(C−|x). (15)

From the classification point of view we can say
that p(x|ck) can be compressed into p̂(x|ck) as long as
the posterior pdf over C before compression remains
approximately unchanged after the compression. This
idea is illustrated in Figure 3. The first row shows the
positive and negative mixture model and the correspond-
ing posterior of C over the feature space. The second the
and the third row show a valid and invalid compression,
respectively. The first compression is valid, since the pos-
terior remains approximately unchanged. On the other
hand, the posterior in the second compression changes
significantly, which means that this compression changes
classification properties of our classifier. In line with
these observations we can conclude, that we require
a distance measure between the posterior distribution
before and after compression. We present such a measure
next.

A. Distance between two classifiers

We define the distance between the posterior p(C|x)
and its compression p̂(C|x), at some value of x, using
the Hellinger distance [36],

D2(p, p̂|x)
∆
=

1

2

∑
C∈[C+,C−]

(p(C|x)
1

2 − p̂(C|x)
1

2 )2. (16)

Note that (16) is just a point-wise distance evaluated at
a particular value of x. We therefore have to integrate it
over the relevant values of x, which gives the expected
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Hellinger distance

D̂2(p, p̂) =

∫
D2(p, p̂|x)p0(x)dx, (17)

where the expectation is calculated over some impor-
tance distribution p0(x) that determines the regions of
the feature space in which the compression effects are
relevant for our classifier. We write the importance distri-
bution as a mixture of the reference and the compressed
distribution, i.e., p0(x) = 0.5p(x|ck) + 0.5p̂(x|ck). For
a particular clustering Ξ(M) = {πm}m=1:M , we can
rewrite p0(x) in terms of clustered components

p0(x) =
M∑
m=1

p
(m)
0 (x), (18)

where we have defined
p

(m)
0 (x) = 0.5p(m)(x|ck) + 0.5p̂(m)(x|ck), and

p(m)(x) =
∑
i∈πm

wiφΣi
(x− µi),

p̂(m)(x) = ŵmφΣ̂m
(x− µ̂m). (19)

With these definitions, we can rewrite (17) into

D2
e(p, p̂) =

M∑
m=1

∫
D2(p, p̂|x)p

(m)
0 (x)dx. (20)

The integrals in (20) are expectations over p(m)
0 (x) and

can be approximated by∫
D̂2(p, p̂)p

(m)
0 (x)dx ≈

∫
D̂2(p(m), p̂(m))p

(m)
0 (x)dx.

(21)
Note that the approximation (21) is valid only when
the relation D̂2(p, p̂) ≈ D2(p(m), p̂(m)|x) approximately
holds for those values of x for which the value of
the pdf p(m)

0 (x) is significant. This in not true for the
general forms of p(m)

0 (x), p(m) and p̂(m). However, our
compression scheme compresses the pdfs by verifying
a sequence of clusterings. As a result the compressed
pdfs have components that tend to form clusters. At the
same time, the hierarchical compression evaluates the
compression error at exactly these clusters and since the
p

(m)
0 (x) captures a single potential cluster by design, the

approximation (21) is valid for our application. With (21)
we can therefore approximate (20) as

D2
e(p, p̂) ≈

M∑
m=1

∫
D2(p(m), p̂(m)|x)p

(m)
0 (x)dx, (22)

which means that the compression cost function D2
e(p, p̂)

decomposes into a sum of independent contributions
from separate clusters and can be as such directly
applied in the hierarchical clustering algorithm from

Section IV-A. One remaining issue is that since p(m)
0 (x)

are Gaussian mixture models, the integrals in (22) do
not have an analytical solution. We overcome this issue
by a simplified version of the unscented transform [37].
We simplify the mixture model p(m)

0 (x) by setting the
covariances of its components to zero, effectively ap-
proximating it by a mixture of weighted Dirac-delta
functions. Each m-th integral in (22) then reduces into
the following weighted sums

D2
m =

∑
j∈πm

w
(m)
j D2(p, p̂|x(m)

j ), (23)

and we can write our discrimination cost function as the
expected Hellinger distance, written in terms of the local
clustering errors, as

E(Ξ(M)) = (
M∑
m=1

D2
m)1/2. (24)

Note that since the Hellinger distance is a metric con-
strained to interval between zero and one, small val-
ues, i.e., E(Ξ(M)) ≈ 0, mean that the classification
properties do not change during compression, while
E(Ξ(M)) = 1 implies a maximal change. Since the
metric is constrained, it is fairly easy to specify a
threshold that generally applies for various input data.
This is a practical advantage over some other uncon-
strained distance measures such as the Kullback Liebler
divergence.

VI. ONLINE DISCRIMINATIVE KDE

In this section we summarize the main steps of the
online discriminative Kernel Density Estimator (odKDE)
and discuss its implementation. Our goal is to continually
update a K-class classifier from a stream of labelled
data-points. Each class is modelled by a probability den-
sity function, which is continually updated. Our model
at time-step t− 1 is therefore a collection of K sample
distributions along with their priors:

{qt−1(x|ck), pt−1(ck)}k=1:K . (25)

At time-step t we observe a set of labelled observations
{zi, ci}i=1:I and update the model through a reconstruc-
tive update (Section III), followed by a discriminative
compression (Section IV) which uses the error function
defined in (24). As a result we get the updated model
{qt(x|ck), pt(ck)}k=1:K . Note that the compression step
is a crucial difference between the odKDE and the
oKDE from [12]. The oKDE compresses the distribu-
tions independently and measures compression cost via
the difference between the pdf of each class before and
after compression. In contrast, the odKDE considers all
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distributions jointly and allows compressions that do not
induce significant changes of the joint posterior distri-
bution. In the classification phase, a new observation z
is classified into a class ĉ by applying the Bayesian rule

ĉ = arg max
ck

pt(z|ck)pt(ck), (26)

where the class likelihoods are calculated by the KDE
(4), i.e., by the convolution of the sample distributions
with their respective kernels,

pt(x|ck) = φ
H

(ck)

t

(x) ∗ qt(x|ck). (27)

Note that the classification (26) is carried out as the
maximum a posteriori estimation of the most likely class.
Such estimation can be hampered in cases when the
class priors pt(ck) are not correctly estimated. From
a Bayesian point of view, with increasing the number
of samples, these priors should converge to true priors
and hence the Bayes-optimal classifier (26). However,
in situations where the number of the observed samples
does not reflect the true prior distributions on the classes,
the classifier may become imbalanced. This can be
remedied by setting the priors of all classes to a uniform
distribution.

As in [32], [12], we do not invoke the compression
after each update in our implementation. The compres-
sion is rather called after some threshold on number
of components Mth in the sample distribution has been
exceeded. Note that this threshold does not determine the
number of components in the final model, but influences
the frequency at which the compression is called. To
avoid too frequent calls to compression, the threshold
is also allowed to vary during the online operation
using a simple hysteresis rule [12]: If the number of
components Nt still exceeds Mth after the compression,
then the threshold increases Mth ← 1.5Mth, otherwise,
if Nt <

1
2Mth, then it decreases Mth ← 0.6Mth.

Recall from Section IV that compression clusters the
sample distribution of a particular class into clusters,
such that the discrimination cost for that class does not
exceed a prescribed threshold Dth. In practice we wish to
constrain the maximum discrimination cost Dmax over
all classes together. We therefore set the threshold for
each class as the overall maximum discrimination cost
divided by the number of classes: Dth = Dmax/K.
The online discriminative Kernel Density Estimator1 is
summarized in Algorithm 1.

1A reference Matlab code is available from the authors’ homepage
http://www.vicos.si/People/Matejk.

Algorithm 1 : The online discriminative Kernel Density
Estimator
Require:
{qt−1(x|ck), pt−1(ck)}k=1:K . . . the input models.
{zi, ci}i=1:I . . . labelled observations.

Ensure:
{q̂t(x|ck), pt(ck)}i=1:K . . . the output models.

Procedure:
1: Step 1 – Reconstructive update:
2: for i = 1 : I do
3: Update the prior pt(ci).
4: Update the sample distribution of class ci,

qt−1(x|ci), with the data-point zi into qt(x|ci)
according to (5).

5: Calculate the new bandwidth for class ci, H
(ci)
t ,

from qt(x|ci) according to (7).
6: end for
7: Calculate the KDEs for all k = 1 : K classes from

the respective sample distributions using (4), i.e.,
pt(x|ck) = Φ

H
(ck)

t

(x) ∗ qt(x|ck).
8: Step 2 – Discriminative compression:
9: for k = 1 : K do

10: If the number of components in qt(x|ck) is lower
than M (ck)

th then q̂t(x|ck)← qt(x|ck) and skip the
next step.

11: Compress qt(x|ck) into q̂t(x|ck) by hierarchical
merging of components (Section IV), such that
the compression cost does not exceed a predefined
threshold, i.e., E(Ξ(M̂)) ≤ Dth, and update the
threshold on the number of components M (ck)

th in
ck-th class.

12: end for

VII. EXPERIMENTAL STUDY

Two sets of experiments were performed to demon-
strate properties of the odKDE. The first set of experi-
ments was conducted on a simulated data and the sec-
ond set of experiments was conducted on the publicly-
available datasets. Note that the only parameter in the
odKDE is the compression threshold that determines
the maximum allowed discriminative cost at a single
compression step. In all our experiments we have used
a constant compression threshold Dmax = 0.12 (Sec-
tion VI). All experiments were run on a 2.7GHz laptop
with 3GB RAM.

A. Illustrative experiment with synthetic data

Recall that the odKDE simplifies its model as much
as possible as long as the simplifications do not sig-
nificantly change the classifier’s properties. In contrast,
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Fig. 4. The reference models along with the sampled data points
from the first variant of the experiment with simulated data (left)
and from the second variant of the experiment (right). Dark (red)
and bright (cyan) lines denote the models of class 1 and class 2,
respectively.

the oKDE [12] allows only simplifications that do not
change the class pdfs significantly. To illustrate this
point, we have created an experiment with simulated
data from two classes. The first class model was a three-
component GMM, with components arranged in a trian-
gle, while the second class model was a single Gaussian
(Figure 4). Two sets of 2D samples were drawn from two
models and used to estimate the two-class classifier. The
first 10 samples from each set were used for initialization
and additional 100 were used for updating with one
sample at a time. Additional 2000 samples were drawn
from the generative models and were classified using
the estimated models. The portion of correctly classified
samples (classification score) was used as a quantitative
measure of performance. For reference, these samples
were also classified by the original models. We have
conducted these experiments for odKDE and for oKDE
in two variants. In the first variant, the Gaussian from
the second class was positioned between the Gaussians
of the first class. In the second variant, the Gaussian from
the second class was positioned away from the Gaussians
of the first class (Figure 4).

In both variants of the experiment, the odKDE as
well as the oKDE have achieved maximal classification
performance, which was equal to the classification on the
original models (98% and 100% for the first and second
variant, respectively). The estimated models are shown
in Figure 5. Note that there is a substantial difference
in the way the observed data affects the structure and
complexity of the classifiers constructed by the odKDE
and the oKDE. In both variants of the experiment, the
oKDE has constructed a classifier of same complexity
(i.e., five components). The reason is that the difference
in the two variants was merely the position of the
second class Gaussian, and since the oKDE updates a
model of a single class independently of the others it
is invariant to such changes. In contrast, the odKDE
considers the models of all classes jointly during the
compression. As a result, the model complexity varied

Fig. 5. The models estimated by the odKDE (first two columns)
and the models estimated by the oKDE (second two columns). Upper
row shows the estimated models along with the observed data-points.
Dark (red) and bright (cyan) lines denote class 1 class 2, respectively.
The lower row shows the classification decision boundaries for each
model. Dark (red) color corresponds to class 1, while the bright
(yellow) color corresponds to class 2.

between the two variants. In the first variant, the odKDE
estimated a model with three components, which is the
minimal number of components that does not hamper
the classification performance. In the second variant,
approximating all three components from the first class
by a single Gaussian does not change the classifier’s
performance and that was the complexity estimated by
the odKDE. Note that the decision boundaries of the
classifiers estimated by the odKDE and oKDE do differ
(see Figure 5). However, from a classification point
of view, these boundaries are equivalent, since they
similarly classify the relevant part of the feature space
(i.e., the part which is populated by the two classes).

B. Experiments with real-world datasets

To evaluate the odKDE’s performance on real data
sets, we have compared it to several related methods.
These were the online reconstructive KDE, oKDE [12],
and three state-of-the-art batch KDEs: the cross-
validation (CV) KDE [10], the reduced-set density es-
timator [19] (RSDE) initialized by the CV, and the
Hall KDE [38] (Hall). For the baseline classification,
we have applied a batch multiclass support vector ma-
chine (SVM) with an RBF kernel [39], an incremental
SVM [23], [40] (iSVM) and an online SVM from [25],
[41] (oSVM). The methods were compared on a set
of public classification problems [42] (Table I). All
datasets were pre-scaled such that the standard deviation
along each of the features was one. The data in each
dataset were randomly reordered, 75% were used for
training and the rest for testing. For all data-sets we have
generated twelve such random partitionings.

The odKDE, oKDE, iSVM and oSVM were initialized
for each class using the first 10 samples and the rest were
added one at a time. The parameter for the batch SVM
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TABLE I
PROPERTIES OF THE DATA-SETS USED IN THE EXPERIMENT WITH
REAL-LIFE DATA. THE NUMBER OF SAMPLES IN EACH DATASET,

THE DIMENSIONALITY AND THE NUMBER OF CLASSES ARE
DENOTED BY NS , ND AND NC , RESPECTIVELY.

dataset NS ND NC

Iris 150 4 3
Wine 178 13 3
Breast cancer (BCW) 285 30 2
Pima 768 8 2
Yeast 1484 8 10
WineRed 1599 11 6
Steel plates (Plates) 1941 27 7
Image segmentation (Seg) 2310 18 7
WineWhite 4898 11 7
Letter 20000 16 26
Skin 307699 3 2
CovType 543441 10 7

kernel was determined separately in each experiment via
cross validation on the training dataset. Since oSVM
and iSVM were used in an online scenario, the kernel
parameters were set in advance. Note that the iSVM and
oSVM are indeed incremental in that they allow adding
one sample at a time, and reestimate their parameters at
each time-step. However, they still store all the observed
samples for optimization of their parameters, which
leads to slow computation and significant memory usage.
Because of this and some numerical stability issues that
we encountered, we have used a linear kernel in the
iSVM. The oSVM guaranties a bound on the number
of support vectors for the kernels that map into a finite
feature space. We have therefore chosen a second-order
polynomial kernel for the oSVM.

Table III summarizes the classification scores of the
models after observing all the samples and shows the
average number of components per class in the models,
averaged over all repetitions of the experiment. The
number of components refers to the number of Gaussians
in the KDEs, while in case of SVMs this number refers
to the number of support vectors. Note that we were
unable to perform the experiments for the larger datasets
in case of CV, RSDE, Hall as well as for iSVM and
oSVM in some cases due to lack of computer memory.
This is a good demonstration of the strict requirement
of the online methods. Namely, in order to cope with
large sequences of data, the algorithms should not store
all the datapoints and should carry out the adaptations
only with their compressed models. These constraints
are only met by the odKDE and oKDE, and are hence
the only two methods that were able to process the

largest of datasets – Skin (more than 300.000 datapoints)
and CovType (more that 500.000 datapoints). In terms
of classification accuracy, the SVM-based methods have
performed very well and sometimes slightly better than
the odKDE. The reason is that SVM is a batch method
and as such it revisits all the data-points during the
optimization of its parameters (i) in terms of cross-
validation for setting the kernel parameters, (ii) as well
as in the optimization of the support vector weights (this
also holds for the incremental SVMs). In contrast, a strict
online approach observes a data-point only once, updates
the compressed model and discards the data. Therefore,
it is reasonable to assume that the batch methods will
perform best in terms of classification (however, not
in terms of model complexity) in situations that allow
revisiting the datapoints. For the same reason, however,
the batch approaches are not suitable for situations in
which the data arrives in streams. Incremental versions
of the SVM alleviate this issue a bit by adapting the
SVM weights when the new datapoint arrives without
repeating the entire computations from the previous
time-steps. However, when the number of datapoints
significantly increased, even these methods eventually
failed, since they stored all the observed datapoints to
perform the required updates. On the other hand, in most
cases, the odKDE delivered comparable classification
performance to the best batch method per dataset, while
the model complexity was significantly lower and was
also able to handle extremely large datasets.

For better orientation we also provide the times re-
quired by online methods for a single-sample update per
class, averaged over the last twenty samples in Table II.
Caution has to be taken in the interpretation of these
results, since most of the implementations are research
code and were not optimized for speed.

TABLE II
AVERAGE TIMES (IN SECONDS) PER SINGLE-SAMPLE UPDATES

OVER THE LAST 20 UPDATES. SEE TEXT FOR DETAILS.

dataset odKDE oKDE iSVM oSVM
[12] [23] [25]

Iris 0.004 0.038 0.001 0.001
Pima 0.007 0.034 0.012 0.001
Wine 0.005 0.036 0.003 0.002
WineRed 0.098 0.076 0.052 0.002
WineWhit 0.525 0.039 0.996 0.007
Letter 0.268 0.087 0.220 0.117
BCW 0.008 0.044 0.004 0.004
Seg 0.021 0.074 0.013 0.008
Plates 0.134 0.262 0.056 0.014
Yeast 0.395 0.038 0.049 0.003
Skin 0.004 0.051 / 0.093
CovType 0.849 0.074 / /



SYSTEMS MAN AND CYBERNETICS: PART B 10

TABLE III
AVERAGE CLASSIFICATION RESULTS [%] ALONG WITH THE NUMBER OF COMPONENTS WRITTEN IN PARENTHESIS. THE SYMBOL /

INDICATES THAT THE CLASSIFIER COULD NOT BE ESTIMATED DUE TO MEMORY LIMITATIONS.

dataset odKDE oKDE [12] CV [10] RSDE [19] Hall [38] SVM [39] iSVM [23] oSVM [25]
Iris 97(3) 97(26) 96(38) 96(11) 97(38) 96(16) 97(10) 99(76)
Pima 74(14) 72(46) 72(288) 65(48) 74(288) 78(163) 69(36) 76(576)
Wine 96(3) 94(43) 92(44) 91(37) 96(44) 96(24) 95(25) 93(89)
WineRed 64(43) 64(42) 64(200) 44(31) 66(200) 63(173) 30(65) 58(400)
WineWhit 60(87) 55(37) 62(525) 25(41) 62(525) 60(473) 28(66) 54(1049)
Letter 96(24) 96(60) 96(577) 53(24) 95(577) 96(311) 84(136) 86(1154)
BCW 96(4) 94(100) 96(214) 94(188) 91(214) 97(52) 84(330) 97(427)
Seg 94(9) 93(44) 94(248) 78(23) 94(248) 94(83) 95(100) 95(496)
Plates 70(34) 72(61) 72(208) 53(38) 65(208) 76(146) 67(267) 73(416)
Yeast 53(42) 49(29) 49(111) 36(41) 25(111) 60(91) 54(36) 60(222)
Skin 100(3) 99(6) / / / 100(169) / 98(6)
CovType 71(123) 66(13) / / / / / /

Table IV shows the classification results only for
the odKDE and the oKDE, where we also denoted by
the asterisk symbol ()∗ cases when the difference in
classification performance was statistically significant.
On average we observe a 1:6 reduction in the model’s
complexity at improved or comparable performance for
the odKDE. In the case of Wine dataset, the complexity
of the odKDE is only 7% of the oKDEs complexity
at improved classification performance. In BCW dataset
the performance is improved for odKDE, while the
complexity reduces from 100 components (oKDE) to
merely 4. Only for the WineWhit, Yeast and CoverType
did the odKDE produce model whose complexity was
larger than those produced by the oKDE. Note, however,
that in those cases the classification performance of the
odKDE significantly surpassed that of the oKDE. The
reason for this difference is exactly in the way the
odKDE compresses, simplifies, its models. Since the
oKDE’s compression is agnostic of the classifier that it
is estimating, the odKDE considers all the classes jointly
and simplifies the models as long as the classifier’s
classification properties do not change. This constraint
prevented the odKDE to oversimplify the models, since
further simplifications would change the classifier. The
result was an improved performance compared to the
oKDE.

Note that the odKDE jointly estimates the appropriate
number of components as well as the component param-
eter from the observed data. Figure 6 shows the variation
of the classification score and the number of components
with respect to the number of observations for the dataset
Plates and Letter. We can see from the Table IV that
the oKDE outperformed the odKDE only for he Plates
dataset in classification by two percent at statistically
significant difference. A reasonable explanation for this

TABLE IV
AVERAGE CLASSIFICATION RESULTS ALONG WITH ± ONE

STANDARD DEVIATION. THE AVERAGE NUMBER OF COMPONENTS
PER MODEL ± ONE STANDARD DEVIATION ARE GIVEN IN

PARENTHESIS. THE ()∗ DENOTES STATISTICALLY SIGNIFICANT
IMPROVEMENT OF CLASSIFICATION.

dataset odKDE oKDE [12]
Iris 97± 3(3± 1) 97± 3(27± 2)
Pima 74± 2(14± 6)

∗
72± 3(44± 5)

Wine 96± 3(3± 1)
∗

94± 3(43± 1)
WineRed 64± 2(43± 3) 64± 1(42± 2)
WineWhit 60± 2(87± 5)

∗
55± 1(37± 2)

Letter 96± 0(24± 2) 96± 0(60± 1)
BCW 96± 2(4± 4)

∗
94± 3(100± 6)

Seg 94± 1(9± 1)
∗

93± 1(44± 3)
Plates 70± 3(34± 3) 72± 1(61± 3)

∗

Yeast 53± 2(42± 3)
∗

49± 3(29± 1)
Skin 100± 0(3± 0)

∗
99± 0(6± 0)

CovType 71± 4(123± 24)
∗

66± 5(13± 1)

result would be that the odKDE did not properly estimate
the model’s complexity up to the last observed datapoint,
which resulted in reduced classification performance in
comparison to the oKDE. Looking at the results for the
Plates dataset in Figure 6 it is clear that the odKDE’s
model complexity was gradually increasing up to the last
datapoint with the number of observations. At the same
time, we can verify that its classification performance
was also increasing. It is therefore reasonable to assume
that the model’s complexity would increase with fur-
ther observations, and thereby increase the classification
performance. Note that, during the online adaptations,
the number of components may stop increasing, but the
components themselves are further adapted to the data.
In practice, we have observed a general trend that the
number of components initially significantly increases in
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Fig. 6. The classification results (Score) w.r.t. the number of
observations (Nobs) in the upper row and the number of components
per class (Ncmp) w.r.t. the number of observations in the second row.

odKDE (as does in oKDE), but then stabilizes for larger
number of samples. For example, in the case of the Letter
dataset, the rate of increase in complexity was reduced
early on after observing 115 samples per class (i.e., after
3000th observation), while the classification performance
further increased through the model refinement (see
Figure 6).

From the experimental results we therefore conclude,
that the odKDE operates well in online setup since it
produces compressed models with good classification
performance. At the same time it maintains sufficient
reconstructive information to allow online refinements of
the models from new observations. We also conclude that
the advantage of the odKDE over the oKDE comes from
the new compression cost that constraints the changes of
the classifier’s properties during compression.

VIII. DISCUSSION AND CONCLUSION

We have proposed an online approach to estimation
of discriminative models. The approach is based on an
online Kernel Density Estimator that reconstructively
updates its representation of the observed data. In order
to prevent the complexity of the model from linearly
increasing with the observed data points, the model is
compressed from time to time into a simpler model.
By defining a cost function that penalizes changes in
the posterior distribution of the classifier, the resulting
models are simplified while retaining their classification
properties. Experiments demonstrate that the proposed
odKDE produces comparable classification performance

to, or outperforms, the batch state-of-the-art and the
purely reconstructive oKDE. At the same time, it pro-
duces models whose complexity is significantly lower
than those estimated by the batch methods, while re-
taining the online property of the oKDE, namely, that it
allows adaptation from as little as a single sample at a
time.

There are many venues of further research and exten-
sions of the odKDE that we intend to pursue. Recently,
Li et. al. [43] have shown how to incorporate measure-
ment noise in the KDE’s to improve classification perfor-
mance. The odKDE already affords a principled way of
accounting for the measurement noise. Recall that each
new observation is added to our sample distribution as a
Dirac-delta function. One way to account for the noise
would be to add a Gaussian with covariance equal to
the measurement noise instead. Hoti and Holmström [8]
have shown that KDEs can be also efficiently applied
to modelling distributions in extremely high-dimensional
feature space. One venue of research would be to apply
results of this paper to their work on high-dimensional
distribution estimation. Another solution to deal with
the extremely high-dimensional feature spaces would
be to apply the manifold constraints from [7] to our
bandwidth estimation. Since the odKDE is based on a
simple reconstructive update rule (5), it can be easily
adapted to address building classifiers from temporally
nonstationary distributions – the distributions that change
in time. The situations in which the input distribution
changes in time is known as the concept drift [31].
Although this was not the focus of the present paper,
the odKDE could be adapted to the concept drift by
introducing an exponential forgetting in the updates (5)
(similarly to [31], [12]). The result of such an adaptation
would be an adaptive online classifier. We also note that
the proposed model generates a Gaussian mixture model
with a general structure of covariance matrices. However,
if the covariances were constrained to be diagonal, all
the computations in the odKDE could be rewritten as dot
products. Such a constraint would then allow application
of the ”kernel trick” used in many kernel machines to
allow coping with extremely high-dimensional data. We
expect these will be the topics of further research.
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[9] E. López-Rubio and J. Ortiz-de Lazcano-Lobato, “Soft cluster-
ing for nonparametric probability density function estimation,”
Pattern Recognition Letters, vol. 29, no. 16, pp. 2085–2091,
2008.

[10] J. M. Leiva-Murillo and A. Arts-Rodrguez, “Algorithms for
maximum-likelihood bandwidth selection in kernel density es-
timators,” Pattern Recognition Letters, vol. 33, no. 13, pp. 1717
– 1724, 2012.

[11] A. Bors and N. Nasios, “Kernel bandwidth estimation for
nonparametric modeling,” Systems, Man, and Cybernetics, Part
B: Cybernetics, IEEE Transactions on, vol. 39, no. 6, pp. 1543–
1555, 2009.

[12] M. Kristan, A. Leonardis, and D. Skočaj, “Multivariate Online
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