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Abstract

This paper presents a computational model which implements formation of cognitive maps
based on panoramic images captured during the exploration phase. The resulting map
consists of “place cells” and topological relations between them. The formation of the
cognitive map is based on the model introduced by Hafner. The use of panoramic images
as inputs would result in high computational complexity of the simulation, therefore we
propose to use the PCA (Principal Component Analysis) method to reduce the dimension of
the input space. A physical force model is applied to extend the relatively sparse topological
map with metric information. Both the computational model and the physical force model
try to mimic functions performed in the mammalian brain.

1 Introduction

Robots, like people, also need to explore and navigate large-scale environments and they face
some of the same obstacles (inaccurate sensor inputs, complex and dynamic environments)
that humans do. However the major difference is that humans (and our ancestors) have been
exploring our environment, avoiding obstacles and dangerous situations for millions of years
(some more and some less successfully). In many cases navigation can be done with little or no
conscious thought. Current mobile robots are still far from human-like ability to explore and
navigate space. So what are humans doing right? Or rather what are robots doing wrong?

The ability to move toward a specified place within the environment is one of the most
important competences for a mobile robot. Successful navigation within any environment re-
quires the robot to determine the current position, the goalposition and the required sequence
of moves to move from one position to the other. Apart from thebasic requirement of “staying
operational” (obstacle avoidance and staying within operational limits) navigation requires the
ability to build a map of the environment and to interpret it accordingly.

In 1948 Tolman introduced the idea that people create what hecalledcognitive maps[10]
of their environment. The idea however, dates back to 1913 when Trowbridge [11] carried



out investigations of what he called ”imaginary maps”. His primary interest was to investigate
why were some people more easily confused when performing orientation tasks than others.
Since then there has been an abundant amount of research in this area, especially from the
psychological point of view, and many of these studies identify hippocampus1 as the most likely
area in the brain where a cognitive map is formed (see [6].

NOVELTY!!!
In this paper we attempt to give a detailed description of a computational model for building

a cognitive map from a sequence of captured panoramic images. Images were captured using
an omnidirectional camera mounted on the robot. To reduce the dimension of the input into the
model we propose to use the PCA method.

STRUCTURE!!!

1.1 Related work

The model used in this paper was inspired by the discovery ofplace cellsin the rat’s hippocam-
pus. O’Keefe [8] noted that certain cells in the hippocampusof a rat preferably fired when the
rat was in a particular part of its environment regardless ofits orientation. These cell are now
called place cells and the portion of the environment where such a cell fires at a heightened rate
is called aplace field.

Many other models have been made to explain the formation of cognitive maps in the hip-
pocampus. In the following lines we briefly introduce some ofthem.

One approach to model the functionality of hippocampus comes from Bousquet, Balakrish-
nan and Honavar [1] who modeled hippocampus as a Kalman filter. They argue that there is a
metric spatial representation in the hippocampal formation which arises as a result of associa-
tion between sensory inputs and dead-reckoning information generated by the animal. They use
the Kalman filter for information fusion from erroneous sources.

Another interesting approach comes from Harter and Kozma [5] who use K-set model of
aperiodic dynamics to explain the cognitive map formation in the hippocampus. They base
their research on experiments done on trained rabits [9]. EEG recordings of rabbit brains show
that chaotic dynamics is the normal state when the animal is attentive in the absence ob stimu-
lus. But those patterns change when a familiar stimulus is presented and the animal displayed
recognition of a previously stored memory. The new dynamic pattern was much more regular
and ordered. The spatial pattern of this activity represented a well defined structure that was
unique for each type of stimulus. Harter and Kozma applied this princliple to building a cog-
nitive map. They tested their model with a Khepera robot in a test environment in which they
placed 8 light sources that were used as salient environmental locations.

A quite different approach has been taken by Fuhs, Redish and Touretzky [3]. First they
describe an algorithm that operates on real images taken from various viewing locations and
returns “blob” descriptions: regions of roughly uniform intensity having rectangular or ovoid
shape. Then they construct simulated place cells using radial basis functions tuned to blob
parameters, and then train them by competitive learning to develop realistic place fields. The

1A region of the brain which, due to its shape, got its name fromthe Greek word for seahorse.



result is a model which takes real-world images as inputs andproduces a distributed activity
pattern over a set of place cells as output, from which current position can be estimated. In this
respect this approach is the most similar to the model used inthis paper.

2 The Cognitive Map Model

In this section we review the computational model used to create a cognitive map of the explored
environment. This model is largely based on the model presented by Hafner [4].

In out model, the map of the environment cbonsists ofJ nodeso = (o1, o2, ..., oJ) rep-
resenting place cells, which are fully interconnected by connection weightsαjk and angles
ρjk, (j, k ∈ {1, 2, ..., J}). Each of these map nodes is also connected with the input layer f =
(f1, f2, ..., fI) (I denotes the size of the input vector) via weight vectorsrj, (j, k ∈ {1, 2, ..., J}).
A preprocessed input vector is fed into the input layer and triggers a “winner takes all” process
in the map layer. In each time stept the activationat

k of each map nodeok is determined using
the sumxt

k of he feature similarityst
k, the connectednessct

k and the movement valueltk
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. A fixed thresholdΘ is subtracted to shift the
input of the sigmoid function toward the negative values to achieve a greater variety of possible
activation values. The map nodeoj with the highest activation value is the winner node. Its
weight vector, as well as its connectedness and movement value to the previous winner node,
are updated in each discrete time step.

The feature similarityst
k is a measure of resemblance between the received input and the an

already perceived view in this map node. It is calculated as aproduct between the input vectorf

and the weight vectorrk connectingf to the nodeoj in the map layer,st
k =
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both f andrk are normalized, it reaches maximum whenf = rk. The weight vectorrk of the
winner node is updated according to the Kohonen learning rule
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whereδ is a learning constant. The weight vector is then normalized. This rule gradually aligns
the weight vectorsrk of the winning nodeok with the direction of the normalized inputf .

By introducing connectednessct
k we take into account in which place field the model as-

sumes it was in the previous step as well as the (un)certaintyof connections between place
fields (represented by map nodes). To calculate the connectedness valuect

k of each map node
ok to other map nodesoj we weigh the connection weightαjk with the last activationat−1

j of
the map nodes

ct
k =

J
∑

j=1

at−1

j αt
jk . (3)

The connection value between two consecutive winner map nodesok andok increases ac-
cording to the following rule:

αt
jk = αt−1

jk + γ
(

αmax − αt−1

jk

)

, (4)



whereγ is a learning constant andαmax is a constant denoting maximum connection weight.
In addition to the preprocessed image which serves as input into this model we also capture

the direction in which the robot was moving in the time interval (t − 1, t] using an electronic
compass mounted on the robot. Since we cannot estimate the length of the traveled path in this
time interval we assume the distances between the consecutive places to be the same.

The movement valuemjk between nodesoj andok is calculated as

mjk = cos (|ρjk − ρinp|) , (5)

whereρt
jk is the stored movement angle andρt

inp is the input angle. The value of|ρjk − ρinp|
lies between0 and2π thereforemjk lies somewhere between−1 and1.

In activation function, the movement valuemjk between nodesoj andok is weighed with
the last activationat−1

j of the nodeoj:

ltk =
J

∑

j=1

at−1

j mt
jk . (6)

The stored angleρt
jk is updated each time whenok is the winner node afteroj by bisecting

the stored angleρt−1

jk and the input angleρt
inp.

2.1 Adding metric information

Studies show (see [8]) that the cognitive map formed in the hippocampus represents space in
a metric form. However the layout of the cognitive map this model builds is not in correspon-
dence with the metric space, since spatial realations between nodes do not reflect in the overall
structure of the map. Therefore we present a physical force model that extends the resulting
topological map with metric information.

To get a better idea of the map, it is useful to arrange it as a graphG = (V,E), where V is
the set of map nodes and E is the set of edges between them. Since we do not know the distance
between connected map nodes, the only information that can be used for this purpose is the
angle informationρjk stored in the cognitive map. Let us now assume that the map nodes are
repulsive charges and that edges between nodes are springs.Let ν (v, w) ∈ R

2 be the distance
vector between nodesv andw andd (v, w) = ‖ν (v, w)‖ its Euclidean length. Between each
pair of nodes we assume a force

F (v, w) = Frep (v, w) + Fattr (v, w) , (7)

the sum of a repulsive caused by charges at each node and an attractive force caused by springs
between nodes. If two nodes are not connected thenFattr (v, w) = 0.

Now let k be a constant denoting the desired distance between map nodes. The attractive
force between nodesv andw is then calculated as

Fattr (v, w) =
d2 (v, w) ν (v, w)

k
, (8)



and the repulsive force as

Frep (v, w) =
−k2ν (v, w)

d (v, w)
. (9)

The task now is to find such a configuration of nodes in which thegraph is balanced. That
means that the sum of forces between all nodes

∑

v,w∈V,v 6=w

(Frep (v, w) + Fattr (v, w)) , (10)

is minimal and therefore the potential energy of the system is minimal. An algorithm for a fast
and stable solution for this problem comes from Fruchteman and Reingold [2]. Their algorithm
however does not solve the question of edge orientation therefor we introduce rotational forces
Frot (v, w) into the algorithm. These forces take into account the angleinformation between
connected map nodes

Frot (v, w) = ν⊥ (v, w) d (v, w) ∆τ (v, w) , (11)

where∆τ (v, w) denotes the difference between the current and stored edge orientation and
ν⊥ (v, w) denotes the unit vector normal toν (v, w) whose cross product with the preferred edge
direction vector does not contain any negative components.Since∆τ (v, w) = π−∆τ (w, v) it
follows thatFrot (v, w) = −Frot (w, v). All forces affecting a node in the map layer are shown
in the picture 2.1.

F

F

F

rep

rot

attFF

∆τ

To find a stable solution to this problem we used simulated annealing [7]. Forces on each
of the nodes are calculated in each step and nodes are moved inthe direction of the sum of
the forces affecting each node. The distance by which each node is moved is limited by the
temperature of that node. The overall temperature of the system is gradually reduced until a
stable solution emerges.

2.2 Adapting place field sizes

At this point we have a cognitive map extended with metric information. Using this information
we can deduce which part of environment are represented by place field of a certain map node.
A question we will address now is the question of place field sizes.



Overly large place fields lack spatial information which could be used for navigation; on
the other hand, overly small place fields require too many mapnodes to represent the entire
area of the environment. Therefore it is important to control the learning parameters of the
aforementioned model to normalize the sizes of place fields.

3 Experimental results

In some experiments we have tried to show how the model buildsa cognitive map of the en-
vironment and how the model modifies the created map as additional information about the
environment becomes available (e.g. robot revisits a part of the environment which it has al-
ready mapped). For this purpose we captured a few image sequences using an omnidirectional
camera mounted on an ATRV-Mini robot. Image sequences were captured in an outdoor envi-
ronment as the robot was led around a triangular obstacle (a flowerbed in front of the faculty
building). The robot was led around the obstacle six times and each time along a slightly dif-
ferent path (1368 images were captured during this phase). Therefore it is expected that the
”quality” of the created the cognitive map will increase as the additional information about the
environment is added.

4 Conclusions

Under construction...
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Figure 1: Images on the left show the path.
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