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Abstract

This paper presents a computational model which implements formation of eegniips
based on panoramic images captured during the exploration phase. stitEngemap
consists of “place cells” and topological relations between them. The formafithe
cognitive map is based on the model introduced by Hafner. The use ofgrait images
as inputs would result in high computational complexity of the simulation, therefer
propose to use the PCA (Principal Component Analysis) method to receidertiension of
the input space. A physical force model is applied to extend the relatipalgs topological
map with metric information. Both the computational model and the physical forceimo
try to mimic functions performed in the mammalian brain.

1 Introduction

Robots, like people, also need to explore and navigate krgke environments and they face
some of the same obstacles (inaccurate sensor inputs, @mpt dynamic environments)
that humans do. However the major difference is that humand ¢ur ancestors) have been
exploring our environment, avoiding obstacles and dangesituations for millions of years
(some more and some less successfully). In many cases hiamigan be done with little or no
conscious thought. Current mobile robots are still far frammlan-like ability to explore and
navigate space. So what are humans doing right? Or rathdramhaobots doing wrong?

The ability to move toward a specified place within the enwinent is one of the most
important competences for a mobile robot. Successful a#aig within any environment re-
quires the robot to determine the current position, the goaition and the required sequence
of moves to move from one position to the other. Apart fromhhsic requirement of “staying
operational” (obstacle avoidance and staying within oj@mal limits) navigation requires the
ability to build a map of the environment and to interpretatardingly.

In 1948 Tolman introduced the idea that people create whatahed cognitive map$10]
of their environment. The idea however, dates back to 1918nwirowbridge [11] carried



out investigations of what he called "imaginary maps”. Higrary interest was to investigate
why were some people more easily confused when performiiggtation tasks than others.
Since then there has been an abundant amount of researcis areh, especially from the
psychological point of view, and many of these studies ifehippocampusas the most likely
area in the brain where a cognitive map is formed (see [6].

NOVELTY!!!

In this paper we attempt to give a detailed description ofraatational model for building
a cognitive map from a sequence of captured panoramic imdgeges were captured using
an omnidirectional camera mounted on the robot. To reduEdithension of the input into the
model we propose to use the PCA method.

STRUCTURE!!

1.1 Related work

The model used in this paper was inspired by the discovepjaak cellsn the rat’s hippocam-
pus. O’Keefe [8] noted that certain cells in the hippocampius rat preferably fired when the
rat was in a particular part of its environment regardlessgsofrientation. These cell are now
called place cells and the portion of the environment wheoa s cell fires at a heightened rate
is called aplace field

Many other models have been made to explain the formatioogdfitve maps in the hip-
pocampus. In the following lines we briefly introduce soméhaim.

One approach to model the functionality of hippocampus «oimem Bousquet, Balakrish-
nan and Honavar [1] who modeled hippocampus as a Kalman flltesy argue that there is a
metric spatial representation in the hippocampal fornmatwhich arises as a result of associa-
tion between sensory inputs and dead-reckoning informagmerated by the animal. They use
the Kalman filter for information fusion from erroneous smes.

Another interesting approach comes from Harter and Kozrmhavf® use K-set model of
aperiodic dynamics to explain the cognitive map formatiorine hippocampus. They base
their research on experiments done on trained rabits [9(> EE€ordings of rabbit brains show
that chaotic dynamics is the normal state when the animaiestive in the absence ob stimu-
lus. But those patterns change when a familiar stimulus isgoted and the animal displayed
recognition of a previously stored memory. The new dynanaitgon was much more regular
and ordered. The spatial pattern of this activity repre=tiat well defined structure that was
unique for each type of stimulus. Harter and Kozma appliéslghincliple to building a cog-
nitive map. They tested their model with a Khepera robot iash €nvironment in which they
placed 8 light sources that were used as salient enviromiecations.

A quite different approach has been taken by Fuhs, Redish ancefeky [3]. First they
describe an algorithm that operates on real images takem fewious viewing locations and
returns “blob” descriptions: regions of roughly uniformensity having rectangular or ovoid
shape. Then they construct simulated place cells using@lradsis functions tuned to blob
parameters, and then train them by competitive learninget@ldp realistic place fields. The

1A region of the brain which, due to its shape, got its name fioenGreek word for seahorse.



result is a model which takes real-world images as inputspanduces a distributed activity
pattern over a set of place cells as output, from which ctpesition can be estimated. In this
respect this approach is the most similar to the model ustdsmpaper.

2 The Cognitive Map Model

In this section we review the computational model used tatera cognitive map of the explored
environment. This model is largely based on the model pteddyy Hafner [4].

In out model, the map of the environment cbonsists/afodeso = (o1, 0, ...,0;) rep-
resenting place cells, which are fully interconnected bgnetion weightsy;, and angles
piks (4, k € {1,2,..., J}). Each of these map nodes is also connected with the input faye
(f1, f2, .-, f1) (I denotes the size of the input vector) via weight vecioré;j, k € {1,2, ..., J}).

A preprocessed input vector is fed into the input layer aimggjérs a “winner takes all” process
in the map layer. In each time steghe activatior:!, of each map node;, is determined using
the sumz}, of he feature similarity!,, the connectednes§ and the movement valué

rL=sp+cd+1, -0, (1)

of in a sigmoid functiont}, = g (z}) = (1 + e~+). Afixed threshold® is subtracted to shift the
input of the sigmoid function toward the negative valuesdioi@ve a greater variety of possible
activation values. The map node with the highest activation value is the winner node. Its
weight vector, as well as its connectedness and movemeam ¥@althe previous winner node,
are updated in each discrete time step.

The feature similarity!, is @ measure of resemblance between the received inputeiaah th
already perceived view in this map node. Itis calculated@®duct between the input vectbr
and the weight vectar;, connecting to the node; in the map layerst, = ™7, (firt,). Since
bothf andr, are normalized, it reaches maximum wheg: ry,. The weight vector, of the
winner node is updated according to the Kohonen learnirg rul

r’,; = r’,?l +0 (ft — r}‘;l) , (2)

whered is a learning constant. The weight vector is then normaliZéds rule gradually aligns
the weight vectors;, of the winning node, with the direction of the normalized inpfit

By introducing connectednes$ we take into account in which place field the model as-
sumes it was in the previous step as well as the (un)certaintpnnections between place
fields (represented by map nodes). To calculate the cordrexts value!, of each map node
oy to other map nodes; we weigh the connection weight;;, with the last activatiom;‘1 of
the map nodes

J
-1
¢ = Zc@ oy (3)

The connection value between two consecutive winner mapswdand o, increases ac-
cording to the following rule:

-1 -1
O‘;‘k = a;’kz + Y (amaac - a;k ) ) (4)



wherev is a learning constant and,,,,. is a constant denoting maximum connection weight.
In addition to the preprocessed image which serves as infiuthis model we also capture
the direction in which the robot was moving in the time intérit — 1,¢] using an electronic
compass mounted on the robot. Since we cannot estimatentjgh lef the traveled path in this
time interval we assume the distances between the congegldices to be the same.
The movement valug:;;, between nodes; ando,, is calculated as

Mjp = COS (‘pjk - pinp‘) ) (5)

wherepi, is the stored movement angle aplg, is the input angle. The value ¢f;. — piny|
lies betweerd) and2r thereforem,;, lies somewhere betweenl and].

In activation function, the movement value;, between nodes; ando, is weighed with
the last activation’ " of the nodey;:

Il = Z a?‘lmzk . (6)

The stored anglg}, is updated each time when is the winner node after; by bisecting
the stored anglg’; ' and the input anglg,,,.

2.1 Adding metric information

Studies show (see [8]) that the cognitive map formed in tippdtampus represents space in
a metric form. However the layout of the cognitive map thisdeldouilds is not in correspon-
dence with the metric space, since spatial realations legtwedes do not reflect in the overall
structure of the map. Therefore we present a physical forogefthat extends the resulting
topological map with metric information.

To get a better idea of the map, it is useful to arrange it agplgr = (V, E'), where V is
the set of map nodes and E is the set of edges between thera.v&rao not know the distance
between connected map nodes, the only information that eamsed for this purpose is the
angle informatiorp;;, stored in the cognitive map. Let us now assume that the mapsnaa:
repulsive charges and that edges between nodes are spratgs(v, w) € R? be the distance
vector between nodasandw andd (v, w) = ||v (v, w)|| its Euclidean length. Between each
pair of nodes we assume a force

F(v,w) = Frep (v,w0) + Fopr (v,0) (7)

the sum of a repulsive caused by charges at each node andaativatforce caused by springs
between nodes. If two nodes are not connected fgn(v, w) = 0.

Now let & be a constant denoting the desired distance between map.ndte attractive
force between nodesandw is then calculated as

P (v, = L0002 00) ®




and the repulsive force as
—k?v (v, w)
A St s 9
d (v, w) ©)
The task now is to find such a configuration of nodes in whichgtiagh is balanced. That
means that the sum of forces between all nodes

Z (EFrep (0, w) + Fopy (v, w)) (10)

v,weV,v#w

Frep (v,w) =

is minimal and therefore the potential energy of the systeminimal. An algorithm for a fast

and stable solution for this problem comes from FruchtenmaihReingold [2]. Their algorithm

however does not solve the question of edge orientatioefiiewe introduce rotational forces
F,o (v,w) into the algorithm. These forces take into account the amjtemation between

connected map nodes

Frot (v,w) = v (v,w)d(v,w) AT (v,w) (11)

where A7 (v, w) denotes the difference between the current and stored edgeation and
v, (v, w) denotes the unit vector normaltdqv, w) whose cross product with the preferred edge
direction vector does not contain any negative compon&meeAr (v, w) = 7 — A7 (w,v) it
follows thatF,.,; (v, w) = —F,., (w,v). All forces affecting a node in the map layer are shown
in the picture 2.1,

To find a stable solution to this problem we used simulateckalimy [7]. Forces on each
of the nodes are calculated in each step and nodes are moted dhirection of the sum of
the forces affecting each node. The distance by which eadh romoved is limited by the
temperature of that node. The overall temperature of theesyss gradually reduced until a
stable solution emerges.

2.2 Adapting place field sizes

At this point we have a cognitive map extended with metrioinfation. Using this information
we can deduce which part of environment are representectog fiield of a certain map node.
A question we will address now is the question of place fieldsi



Overly large place fields lack spatial information which kebbe used for navigation; on
the other hand, overly small place fields require too many nages to represent the entire
area of the environment. Therefore it is important to cdritne learning parameters of the
aforementioned model to normalize the sizes of place fields.

3 Experimental results

In some experiments we have tried to show how the model bailcsgnitive map of the en-

vironment and how the model modifies the created map as additinformation about the

environment becomes available (e.g. robot revisits a gatieoenvironment which it has al-
ready mapped). For this purpose we captured a few image iseggiasing an omnidirectional
camera mounted on an ATRV-Mini robot. Image sequences wagied in an outdoor envi-
ronment as the robot was led around a triangular obstacleWerfbed in front of the faculty

building). The robot was led around the obstacle six timakeach time along a slightly dif-

ferent path (1368 images were captured during this phadegreiore it is expected that the
"quality” of the created the cognitive map will increase las additional information about the
environment is added.

4 Conclusions

Under construction...
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