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Abstract— When a cognitive system encounters particular
objects, it needs to know what effect each of its possible actions
will have on the state of each of those objects in order to be able
to make effective decisions and achieve its goals. Moreover, it
should be able to generalize effectively so that when it encoun-
ters novel objects, it is able to estimate what effect its actions
will have on them based on its experiences with previously
encountered similar objects. This idea is encapsulated by the
term “affordance”, e.g. “a ball affords being rolled to the
right when pushed from the left.” In this paper, we discuss
the development of a cognitive vision platform that uses a
robotic arm to interact with household objects in an attempt
to learn some of their basic affordance properties. We outline
the various sensor and effector module competencies that were
needed to achieve this and describe an experiment that uses a
self-organizing map to integrate these modalities in a working
affordance learning system.

I. INTRODUCTION

Recent years have seen a surge of activity in the area

of developmental robotics [1], a trend that can be seen

to underscore the desire to move away from task-specific

systems and towards more robust, adaptable platforms and

architectures. Desirable traits of such systems include the

ability to learn continuously during the course of a lifespan

or deployment period, the capacity to construct new concepts

from previously learned or known ones, the ability to actively

learn via interaction with a tutor or another knowledgeable

entity, etc. Naturally, these are difficult problems that are

unlikely to be amenable to wholesale solutions, but many

interesting, more tractable sub-problems can be identified,

one of which is the issue of affordance learning.

The term affordance was coined by the psychologist J.J.

Gibson [2] to describe the interactive possibilities of a

particular object or environment, e.g., “a ball affords rolling”

or “a lightswitch affords the illumination of a light bulb”.

For our purposes here, we will be framing the problem

of affordance learning by considering “what will happen if

action Ai is performed on object Oj”.

In this paper we will present a cognitive vision system that

learns basic object affordance properties by interacting with

household objects on a table surface using a robotic arm, and

observing the result using a camera system. The experimental

environment is shown in Fig. 2 and Fig. 3. These devices are
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integrated over a distributed architecture, shown in Fig. 1.

The main idea is to allow the system to perform a variety of

simple push actions on objects that are placed on the work

surface, record video footage of the result, harvest this data

for appropriate features and attempt to learn the similarities

inherent in the behaviour of those objects that are physically

similar when affected by such actions.

Fig. 1. System architecture.

A number of researchers have sought to develop systems

for learning affordances in different settings [3], [4], [5], [6].

In [3], the author devised a similar experiment for affordance

learning to the one listed here, where a robot was given a set

of 4 actions to perform on 4 toy objects. However, the system

only learned one affordance feature, a measurement of how

likely it would be for an object to roll along its principal axis;

in our case, 11 features are presented to a more generalized

learning system. The author of [4] allowed a robotic arm to

use a set of tools to manipulate a hockey puck on a work

surface and considered two types of affordances; binding

affordances for potential arm tool attachments, and output

affordances for the effect that that tool would have on the

puck. An object manipulation tool is also used by the robotic

system presented here, as detailed in Section IV, but rather

than learning the tool affordances, we focus on learning

object affordances that become apparent when the tool is

used to manipulate different types of objects. An architecture

for action (mimicking) and program (gesture) level visual

imitation in a robotic platform is presented in [5], where

object affordance contexts are used to focus the attention

of a gesture recognition system and reduce ambiguities.

Gesture recognition in the motor space is performed using
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a Bayesian framework that relies on prior knowledge from

object affordance contexts, which are provided. Though

we do not perform recognition in this work, rather then

providing affordances as a prior, we present a framework

in which object affordances may be learned dynamically.

This knowledge could be subsequently used to aid in various

recognition tasks or, indeed, knowledge obtained from an

object recognition process could be used as input to our

affordance learning system.

Fig. 2. Side view of the workspace. The robotic arm holds a black plastic
tool that is used to push objects on the work surface.

Fig. 3. Workspace as seen by the tripod-mounted camera system.

For the particular experiments presented here, we provide

the system with information on what object is present in

the scene, as well as with a fixed repertoire of possible

arm ’push’ actions. Recognition and/or classification of the

particular objects involved was not the primary focus of this

work, but could be dealt with in a seperate module and

integrated into the system. Thus, the task in the experiments

is framed as a regression problem where the system receives

a feature vector when a particular action is performed on

a given object, and tries to both estimate and adjust a

target function for that action/object combination. Naturally,

a hugely important aspect of such an experimental architec-

ture is that the actions performed by the effector and the

features garnered from the sensors be reasonably consistent

in nature; otherwise it would be impossible to learn such

target functions. We discuss how this is achieved later in

Section II.

In principle, many different learning algorithms could be

used in the system described above to solve the problem

of predicting the resulting feature vectors for particular ac-

tion/object combinations. We chose to use the self-organizing

map (SOM) or Kohenen map [7] for three main reasons.

Firstly, during training, SOMs form clusters that not only

group similar exemplars, but are also related to each other

topologically. A SOM is made up of nodes that are linked

to other nodes by a map topology and a neighbourhood

function. If the node at the center of a data cluster is

topologically close to another cluster node then concepts

captured by those respective clusters can be said to be

similar, whereas clusters that are topologically distant from

each other are more likely to represent concepts that are

dissimilar.

The second reason why SOMs were chosen is because

they can be randomly initialized and trained incrementally

without a batch training procedure; the maps self-organize

and form clusters as data arrives sample-by-sample. This is

an essential requirement for any cognitive system that needs

to learn in a continuous, life-long manner.

Thirdly, SOMs have been previously shown to work well

for learning affordances, albeit in a simulated robotic system

[6]. The authors of [6] used a SOM with a Hebbian mecha-

nism called a Growing When Required (GWR) network to aid

a simulated Khepera robot in learning affordances of objects

with survival values such as nutrition and stamina so that it

could prosper over time in its environment.

The paper is organized as follows. In the next section, we

outline the system architecture and implementation details.

This will aid the discussion in Section III where we highlight

how a SOM was used as the learning mechanism for our

system. In Section IV we describe an experiment devised to

evaluate the system, and finally in Section V we conclude

and state our goals for future work.

II. SYSTEM ARCHITECTURE & IMPLEMENTATION

A. Robotic Arm

In our system, we use a Neuronics Katana 6M robotic arm

which features 5 DC motors for main arm movement, as well

as a 6th motor to power a 2 fingered gripper that houses both

infrared and haptic sensors (note: these sensors are not used

in the experiment presented here). The base of the arm is

mounted on a flat table with a wooden laminate surface, and

the arm is allowed to move freely in the area above the table

surface, avoiding collisions with the table through the use of

specialized control software.

1) Interface: The system is designed to be controlled from

the Matlab software environment. Matlab was chosen as it

allows for rapid prototyping of high-level control programs

and provides extensive functionality for computer vision
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manipulations as well as other procedures. In order for

experiments involving the robot arm to be performed via

Matlab and to aid swift cross-platform integration of the

arm in future projects, a CORBA interface was developed

to sit between the low-level arm control software and high-

level Java control client which can easily be called from

Matlab. This allows for swift arm/work-space calibration

from within Matlab and provides simple moveTo(x, y, z)
style functionality for moving the end-effector to a localized

position (x, y, z) in the workspace.

2) Arm Control Software: At the heart of the arm control

architecture lies Golem1, control and planning software de-

veloped specifically for the Katana arm. The software works

by transforming desired positions expressed in workspace

(x, y, z) coordinate trajectories, to jointspace trajectories,

i.e. suitable control signals for each of the 6 arm motors.

Golem was originally developed for experiments that involve

navigating the arm around workspace obstacles in order to

reach objects for grasping. Since our intended use of the

arm involved collision with objects rather than avoidance, the

software had to be modified in two important ways. Firstly,

planned movement trajectories had to be constrained to be as

linear as possible and secondly, the orientation of the forearm

and end-effector had to be made as consistent as possible

over repeated movements.

B. Camera System

A Point Gray Research Flea monocular camera (640x480

@ 60FPS or 1024x768 @ 30FPS) was used to gather images

and video for the experiment listed in Section IV.

1) Interface: The camera system is operated using a

similar interface to that of the robotic arm. A Java client

is called from Matlab to interface with a CORBA server

that implements the low-level camera functionality. During

experiments, after an action command is issued to the robotic

arm, the camera system starts recording images and contin-

ues recording until movement in the scene has ceased. These

images are then used to create a video, which is passed to a

compression module, after which it may be gathered from a

web server.

2) Tracking System: After video processing, objects are

tracked using a probabilistic tracker [8]. This tracker is

in essence a color-based particle filter, which makes use

of background subtraction using a pre-learned background

image. Object shapes are approximated by elliptical regions,

while their colour is encoded using colour histograms. The

dynamics of objects are modeled using a dynamic model [9],

which allows for tracking with a smaller number of particles,

and consequently, near real-time tracking performance.

3) Feature Extraction: The following 11 features are

extracted from the video data: total distance traveled in x-

axis, total distance traveled in y-axis, total Euclidean distance

traveled, mean velocity in x-axis, mean velocity in y-axis,

velocity variance in x-axis, velocity variance in y-axis, final

x position, final y position, final orientation, orientation

difference between start orientation and final orientation.

1http://www.cs.bham.ac.uk/˜msk/

III. LEARNING WITH A SELF-ORGANIZING MAP

A. SOM Description

A SOM [7] is a set of n nodes that are connected to each

other via a neighbourhood relation on a low-dimensional

(usually 2D) grid. Each ith node contains a d-dimensional

weight vector, mi = [mi1, . . . , mid] whose dimension d is

equal to the dimension of the data vectors that are provided

as input to the SOM during training. The neighbourhood

relation may be configured in any number of ways. In the

map used for the experiment detailed in Section IV, we

used a hexagonal neighbourhood function where each node

is connected to six neighbouring nodes, as shown in Fig. 5.

Various topologies, e.g., sheet-shaped, cylindrical, toroidal,

may also be used to connect map nodes to each other.

Depending on the type of neighbourhood relation and the

topology imposed, as the SOM is trained weight vectors

that are similar with respect to a distance metric, usually

Euclidean, will move closer to each other topologically.

B. Incremental Training Algorithm

The weight vectors in each of the n nodes of the SOM are

usually randomly initialized before training begins. At each

training step, a data vector x = [x1, . . . , xd] is fed to the

SOM and is measured against each node in the SOM using

the Euclidean distance metric, as follows:

||x − mi||
2 =

d∑

j=1

wj(xj − mij)
2, (1)

where wj is an element of mask vector w = [w1, . . . , wd]
which can be used to block out or discount individual

features during training depending on requirements. The

node that is closest to the input data vector based on this

metric is called the best matching unit (BMU) and both it

and its neighbouring nodes are updated using the following

update rule

mi(t + 1) = mi(t) + α(t)hci(t)[x(t) − mi(t)], (2)

operating over all i ∈ [1, n], where α(t) is the learning

rate at time t and hci(t) is the neighbourhood kernel around

the BMU c. The neighbourhood kernel is a non-increasing

function of time and of the grid-wise distance (distance

between nodes on the grid, as opposed to Euclidean distance

between their constituent weight-vectors) of node i from the

winning node c.

C. SOM Usage in Experiments

For the experiment outlined in the following section, we

made use of the publicly available SOM Toolbox 2.0 2

for Matlab. Feature vectors were collected, each of which

had unique text labels associated with them detailing the

action/object pairing that produced the feature vector. The

text labels that were used in the experiment are shown in

Table I. During training, when the BMU for the input data

vector is found, the label or labels that are associated with

2http://www.cis.hut.fi/projects/somtoolbox/
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TABLE I

ACTION/OBJECT PAIRINGS.

Push top / blue cube Push middle / blue cube Push bottom / blue cube

Push top / ladybird Push middle / ladybird Push bottom / ladybird

Push top / Pepsi can Push middle / Pepsi can Push bottom / Pepsi can

Push top / phone Push middle / phone Push bottom / phone

that data vector are attached to the weight vector of the

BMU. The labels do not affect the weighting of the nodes

or the structure of the map, but are useful for classifying

the clusters that are formed in the map during training. For

our experiments, we use the labels to identify action/object

pairings, e.g., ”Push top of pepsican” or ”Push bottom of

phone”. As the SOM is being trained, more and more labels

get attached to BMU’s in the map. In order to predict what

feature outcomes are afforded by a particular action/object

pairing, the system may search for the node in the SOM that

has had the label for that action/object pairing attached to

it most frequently. The weight vector at that node forms the

affordance prediction for that action/object pairing.

The true power of the SOM in affordance learning lies

with its capacity for topological self-organization. If two

action/object pairings are sufficiently dissimilar with respect

to the feature vectors they produce, the text labels that are

associated with them should cluster on nodes in the map that

are topologically distant. This allows for different affordance

concepts to be neatly captured in an unsupervised way. For

example, if a ball is pushed on a table surface, it is likely

to roll across the table and produce quite a different feature

vector to a box-shaped object that is pushed on the table in

a similar way. These feature vectors would likely cluster at

topologically distant locations in the SOM, thus capturing

the concept of rolling versus non-rolling objects. In the next

section we describe an experiment to demonstrate this idea

and we evaluate its performance.

(a) (b) (c) (d)

Fig. 4. Test Objects: (a) Blue cube (b) Ladybird rattle (c) Pepsi can (d)
Mobile phone.

IV. EXPERIMENTAL RESULTS

A. Description of Experiment

To test the efficacy of the system for learning basic object

affordance properties, the experimental environment was set

up as shown in Fig. 2 and Fig. 3, where the Flea camera was

positioned roughly one metre above the work surface on a

tripod, giving it a top-down viewpoint of the scene. To help

avoid arm/object occlusions, which would have posed some

difficulties for the tracking system, an black plastic pushing

tool was placed in the Katana arm’s gripper as shown.

Fig. 5. Example of SOM labeling after 180 training steps using the
full dataset. As data vectors with associated text labels are incrementally
fed to the SOM, their best-matching node in the map is found, updated,
and the text label is added to that node. Over time, labels will gather on
specific points in the map and labels that represent action/object pairings
with similar properties will be found close to each other. Only the most
frequent occurences of each label are shown in this visualization.

A set of 3 pushing actions was provided to the system,

each of which involved keeping the forearm part of the arm

orthogonal to the work surface and pushing from the right

side of the workspace to the left side, through a fixed object

start position. One of the actions pushed through the middle

of the fixed start position, a second pushed through a point

above the start position (“above” with respect to the start

location in the image space, not in the arm space) and a third

action pushed through a point below the start position. We

selected 4 household objects to be used in the experiments

as shown in Fig. 4; a blue toy cube, a toy ladybird rattle

that is capable of rolling, a Pepsi can, and a mobile phone.

During trials, each of these objects was placed centred at

the start position with a consistent orientation, as in Fig. 4,

and the Katana arm pushed the object at a fixed speed using

one of the 3 actions. See Table I for the full range of twelve

action/object pairings that were tested.

After an action was performed on an object, the images

were gathered from the Flea camera, converted to video,

compressed, and passed to the tracking system, as well as the

other feature extractors. The 11 extracted features discussed

in Section II-B.3 along with the action/object label were then

used as input for the SOM during training.
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Fig. 6. Example of SOM self-organization after 180 training steps using
the full dataset. Cross-sections of the map are shown detailing the learned
feature weight values and topological organization for each of the 11
features. A unified distance matrix is shown in the top-left and is useful
for visualizing the overall Euclidean distance between adjacent map nodes
when considering all features together.

B. Results

In order to evaluate the SOM, 15 object push tests were

carried out for each of the 12 action/object pairings listed in

Table I and the resulting data was processed, leaving 180 data

samples. This dataset was then normalized and an effective

SOM size of 66 nodes was determined based on the size of

the dataset. A sheet-shaped hexagonal lattice (see Fig. 5 and

Fig. 6) was chosen for the SOM and this determined both

the neighbourhood function and the topology of the map.

A first test was carried out to measure the generalization

capability of the system. The dataset was seperated into a

training set of 135 samples with one of the object types

omitted and a test set of 45 samples associated with the

remaining object. A SOM was trained incrementally using

random permutations of the training set and at each training

step, the entire test set was used to evaluate the map. For

each test sample, the BMU was found in the map and its

topological node distance was measured against other nodes

in the map whose labels matched the action label associated

with the test sample. The labeled nodes with the highest

frequencies for each of the training objects were chosen and

the distances were recorded and averaged over 20 trials for

each test object. Results are shown in Fig. 7. It is clear from

the Figure that the SOM quickly captures the difference

between rolling and non-rolling object affordances and is

able to generalize this knowledge for novel objects. Training

objects that generate the smallest map distances to the test

objects in this evaluation are considered to be best-matching

object types for the respective test objects.

A second test was used to measure the classification

ability of the system based on the results of the previous

test. The experiment was set up as before, but this time,

at each training step the BMU for each test sample was

found in the map and the closest labeled map node with the

corresponding action label was used to classify the object of

the test sample. At each step and for each trial, the number of

times this object matched the relevant best-matching training

object selected in the previous test was counted and averaged

across all 20 trials for each test object. This meant that over

time, 9 possible classes emerged in the maps based on the

action/object pairings of the training sets. Results are shown

in Fig. 8.

V. CONCLUSION AND FUTURE WORK

In this paper we discussed the development of a cognitive

system equipped with a robotic arm and a camera system

that is capable of learning basic object affordance properties.

We demonstrated how a self-organizing map may be used

as an unsupervised mechanism for classifying action/object

pairings with similar affordance properties and we presented

experimental results proving the efficacy of this approach.

In future, we hope to replace the text-labeling of objects

with a system module that gathers visual features of the

objects and uses them as input to the affordance learning

system. We would also like to explore the idea of dynam-

ically constructing more complex affordance concepts from

basic ones in a developmental learning framework.
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(a) Test object: blue cube
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(b) Test object: ladybird
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(c) Test object: pepsi can
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Fig. 7. Generalization results for the first test detailed in Section IV-B. The best-matching object type in each of the test cases (a), (b), (c) and (d) was
used as the basis for the second test listed in Section IV-B and Fig. 8, e.g., “phone” is the best-matching object for the “blue cube” test object in (a).
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(a) Test object: blue cube
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(b) Test object: ladybird
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(c) Test object: pepsi can
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(d) Test object: phone

Fig. 8. Classification results. This evaluation was set up as described in Section IV-B. The y-axes show the percentage of correct classifications for all
45 test samples in each case based on the best-matching objects derived from the the first test evaluation described in Section IV-B and Fig. 7.
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