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Abstract

Open-ended spoken interactions are typi-
cally characterised by both structural com-
plexity and high levels of uncertainty,
making dialogue management in such set-
tings a particularly challenging problem.
Traditional approaches have focused on
providing theoretical accounts for either
the uncertainty or the complexity of spo-
ken dialogue, but rarely considered the
two issues simultaneously. This paper de-
scribes ongoing work on a new approach
to dialogue management which attempts
to fill this gap. We represent the interac-
tion as a Partially Observable Markov De-
cision Process (POMDP) over a rich state
space incorporating both dialogue, user,
and environment models. The tractability
of the resulting POMDP can be preserved
using a mechanism for dynamically con-
straining the action space based on prior
knowledge over locally relevant dialogue
structures. These constraints are encoded
in a small set of general rules expressed as
a Markov Logic network. The first-order
expressivity of Markov Logic enables us
to leverage the rich relational structure of
the problem and efficiently abstract over
large regions of the state and action spaces.

1 Introduction

The development of spoken dialogue systems for
rich, open-ended interactions raises a number of
challenges, one of which is dialogue management.
The role of dialogue management is to determine
which communicative actions to take (i.e. what to
say) given a goal and particular observations about
the interaction and the current situation.

Dialogue managers have to face several issues.
First, spoken dialogue systems must usually deal

with high levels of noise and uncertainty. These
uncertainties may arise from speech recognition
errors, limited grammar coverage, or from various
linguistic and pragmatic ambiguities.

Second, open-ended dialogue is characteristi-
cally complex, and exhibits rich relational struc-
tures. Natural interactions should be adaptive to
a variety of factors dependent on the interaction
history, the general context, and the user prefer-
ences. As a consequence, the state space necessary
to model the dynamics of the environment tends to
be large and sparsely populated.

These two problems have typically been ad-
dressed separately in the literature. On the one
hand, the issue of uncertainty in speech under-
standing is usually dealt using a range of proba-
bilistic models combined with decision-theoretic
planning. Among these, Partially Observable
Markov Decision Process (POMDP) models have
recently emerged as a unifying mathematical
framework for dialogue management (Williams
and Young, 2007; Lemon and Pietquin, 2007).
POMDPs provide an explicit account for a wide
range of uncertainties related to partial observabil-
ity (noisy, incomplete spoken inputs) and stochas-
tic action effects (the world may evolve in unpre-
dictable ways after executing an action).

On the other hand, structural complexity is
typically addressed with logic-based approaches.
Some investigated topics in this paradigm are
pragmatic interpretation (Thomason et al., 2006),
dialogue structure (Asher and Lascarides, 2003),
or collaborative planning (Kruijff et al., 2008).
These approaches are able to model sophisticated
dialogue behaviours, but at the expense of robust-
ness and adaptivity. They generally assume com-
plete observability and provide only a very limited
account (if any) of uncertainties.

We are currently developing an hybrid approach
which simultaneously tackles the uncertainty and
complexity of dialogue management, based on a



POMDP framework. We present here our ongo-
ing work on this issue. In this paper, we more
specifically describe a new mechanism for dy-
namically constraining the space of possible ac-
tions available at a given time. Our aim is to use
such mechanism to significantly reduce the search
space and therefore make the planning problem
globally more tractable. This is performed in two
consecutive steps. We first structure the state space
using Markov Logic Networks, a first-order prob-
abilistic language. Prior pragmatic knowledge
about dialogue structure is then exploited to derive
the set of dialogue actions which are locally ad-
missible or relevant, and prune all irrelevant ones.
The first-order expressivity of Markov Logic Net-
works allows us to easily specify the constraints
via a small set of general rules which abstract over
large regions of the state and action spaces.

Our long-term goal is to develop an unified
framework for adaptive dialogue management in
rich, open-ended interactional settings.

This paper is structured as follows. Section 2
lays down the formal foundations of our work,
by describing dialogue management as a POMDP
problem. We then describe in Section 3 our ap-
proach to POMDP planning with control knowl-
edge using Markov Logic rules. Section 4 dis-
cusses some further aspects of our approach and
its relation to existing work, followed by the con-
clusion in Section 5.

2 Background

2.1 Partially Observable Markov Decision
Processes (POMDPs)

POMDPs are a mathematical model for sequential
decision-making in partially observable environ-
ments. It provides a powerful framework for con-
trol problems which combine partial observability,
uncertain action effects, incomplete knowledge of
the environment dynamics and multiple, poten-
tially conflicting objectives.

Via reinforcement learning, it is possible to
automatically learn near-optimal action policies
given a POMDP model combined with real or sim-
ulated user data (Schatzmann et al., 2007).

2.1.1 Formal definition
A POMDP is a tuple 〈S,A,Z, T,Ω, R〉, where:

• S is the state space, which is the model of
the world from the agent’s viewpoint. It is
defined as a set of mutually exclusive states.
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Figure 1: Bayesian decision network correspond-
ing to the POMDP model. Hidden variables are
greyed. Actions are represented as rectangles to
stress that they are system actions rather than ob-
served variables. Arcs into circular nodes express
influence, whereas arcs into squared nodes are in-
formational. For readability, only one state is
shown at each time step, but it should be noted
that the policy π is function of the full belief state
rather than a single (unobservable) state.

• A is the action space: the set of possible ac-
tions at the disposal of the agent.

• Z is the observation space: the set of obser-
vations which can be captured by the agent.
They correspond to features of the environ-
ment which can be directly perceived by the
agent’s sensors.

• T is the transition function, defined as T :
S × A × S → [0, 1], where T (s, a, s′) =
P (s′|s, a) is the probability of reaching state
s′ from state s if action a is performed.

• Ω is the observation function, defined as
Ω : Z × A × S → [0, 1], with Ω(z, a, s′) =
P (z|a, s′), i.e. the probability of observing z
after performing a and being now in state s′.

• R is the reward function, defined as R :
S × A → <, R(s, a) encodes the utility for
the agent to perform the action a while in
state s. It is therefore a model for the goals or
preferences of the agent.

A graphical illustration of a POMDP model as
a Bayesian decision network is provided in Fig. 1.

In addition, a POMDP can include additional
parameters such as the horizon of the agent (num-



ber of look-ahead steps), and the discount factor
(weighting scheme for non-immediate rewards).

2.1.2 Beliefs and belief update
A key idea of POMDP is the assumption that the
state of the world is not directly accessible, and
can only be inferred via observation. Such uncer-
tainty is expressed in the belief state b, which is
a probability distribution over possible states, that
is: b : S → [0, 1]. The belief state for a state
space of cardinality n is therefore represented in a
real-valued simplex of dimension (n−1).

This belief state is dynamically updated before
executing each action. The belief state update op-
erates as follows. At a given time step t, the agent
is in some unobserved state st = s ∈ S . The
probability of being in state s at time t is writ-
ten as bt(s). Based on the current belief state bt,
the agent selects an action at, receives a reward
R(s, at) and transitions to a new (unobserved)
state st+1 = s′ , where st+1 depends only on st
and at. The agent then receives a new observation
ot+1 which is dependent on st+1 and at.

Finally, the belief distribution bt is updated,
based on ot+1 and at as follows1.

bt+1(s
′)= P (s′|ot+1, at, bt) (1)

=
P (ot+1|s′, at, bt)P (s′|at, bt)

P (ot+1|at, bt)
(2)

=
P (ot+1|s′, at)

∑
s∈S P (s′|at, s)P (s|at, bt)

P (ot+1|at, bt)
(3)

= α Ω(ot+1, s
′, at)

∑
s∈S

T (s, at, s
′)bt(s) (4)

where α is a normalisation constant. An initial
belief state b0 must be specified at runtime as a
POMDP parameter when initialising the system.

2.1.3 POMDP policies
Given a POMDP model 〈S,A,Z, T, Z,R〉, the
agent should execute at each time-step the action
which maximises its expected cumulative reward
over the horizon. The function π : B → A defines
a policy, which determines the action to perform
for each point of the belief space.

The expected reward for policy π starting from
belief b is defined as:

Jπ(b) = E
[ h∑
t=0

γtR(st, at) | b, π
]

(5)

1As a notational shorthand, we write P (st=s) as P (s)
and P (st+1=s′) as P (s′).

The optimal policy π∗ is then obtained by optimiz-
ing the long-term reward, starting from b0:

π∗ = argmax
π

Jπ(b0) (6)

The optimal policy π∗ yields the highest expected
reward value for each possible belief state. This
value is compactly represented by the optimal
value function, noted V ∗, which is a solution to
the Bellman optimality equation (Bellman, 1957).

Numerous algorithms for (offline) policy opti-
misation and (online) planning are available. For
large spaces, exact optimisation is impossible and
approximate methods must be used, see for in-
stance grid-based (Thomson and Young, 2009) or
point-based (Pineau et al., 2006) techniques.

2.2 POMDP-based dialogue management
Dialogue management can be easily cast as a
POMDP problem, with the state space being a
compact representation of the interaction, the ac-
tion space being a set of dialogue moves, the ob-
servation space representing speech recognition
hypotheses, the transition function defining the
dynamics of the interaction (which user reaction
is to be expected after a particular dialogue move),
and the observation function describing a “sensor
model” between observed speech recognition hy-
potheses and actual utterances. Finally, the reward
function encodes the utility of dialogue policies –
it typically assigns a big positive reward if a long-
term goal has been reached (e.g. the retrieval of
some important information), and small negative
rewards for minor “inconveniences” (e.g. prompt-
ing the user to repeat or asking for confirmations).

Our long-term aim is to apply such POMDP
framework to a rich dialogue domain for human-
robot interaction (Kruijff et al., 2010). These inter-
actions are typically open-ended, relatively long,
include high levels of noise, and require complex
state and action spaces. Furthemore, the dialogue
system also needs to be adaptive to its user (at-
tributed beliefs and intentions, attitude, attentional
state) and to the current situation (currently per-
ceived entities and events).

As a consequence, the state space must be ex-
panded to include these knowledge sources. Be-
lief monitoring is then used to continuously update
the belief state based on perceptual inputs (see
also (Bohus and Horvitz, 2009) for an overview of
techniques to extract such information). These re-
quirements can only be fullfilled if we address the



“curse of dimensionality” characteristic of tradi-
tional POMDP models. The next section provides
a tentative answer.

3 Approach

3.1 Control knowledge
Classical approaches to POMDP planning oper-
ate directly on the full action space and select the
next action to perform based on the maximisation
of the expected cumulative reward over the spec-
ified horizon. Such approaches can be used in
small-scale domains with a limited action space,
but quickly become intractable for larger ones, as
the planning time increases exponentially with the
size of the action space. Significant planning time
is therefore spend on actions which should be di-
rectly discarded as irrelevant2. Dismissing these
actions before planning could therefore provide
important computational gains.

Instead of a direct policy optimisation over the
full action space, our approach formalises action
selection as a two-step process. As a first step, a
set of relevant dialogue moves is constructed from
the full action space. The POMDP planner then
computes the optimal (highest-reward) action on
this reduced action space in a second step.

Such an approach is able to significantly reduce
the dimensionality of the dialogue management
problem by taking advantage of prior knowledge
about the expected relational structure of spoken
dialogue. This prior knowledge is to be encoded
in a set of general rules describing the admissible
dialogue moves in a particular situation.

How can we express such rules? POMDPs are
usually modeled with Bayesian networks which
are inherently propositional. Encoding such rules
in a propositional framework requires a distinct
rule for every possible state and action instance.
This is not a feasible approach. We therefore need
a first order (probabilistic) language able to ex-
press generalities over large regions of the state
action spaces. Markov Logic is such a language.

3.2 Markov Logic Networks (MLNs)
Markov Logic combines first-order logic and
probabilistic graphical models in a unified repre-
sentation (Richardson and Domingos, 2006). A

2For instance, an agent hearing a user command such as
“Please take the mug on your left” might spent a lot of plan-
ning time calculating the expected future reward of dialogue
moves such as “Is the box green?” or “Your name is John”, which
are irrelevant to the situation.

Markov Logic Network L is a set of pairs (Fi, wi),
where Fi is a formula in first-order logic and wi is
a real number representing the formula weight.

A Markov Logic Network L can be seen as
a template for constructing markov networks3.
To construct a markov network from L, one has
to provide an additional set of constants C =
{c1, c2, ..., c|C|}. The resulting markov network
is called a ground markov network and is written
ML,C . The ground markov network contains one
feature for each possible grounding of a first-order
formula in L, with the corresponding weight. The
technical details of the construction of ML,C from
the two sets L and C is explained in several pa-
pers, see e.g. (Richardson and Domingos, 2006).

Once the markov network ML,C is constructed,
it can be exploited to perform inference over ar-
bitrary queries. Efficient probabilistic inference
algorithms such as Markov Chain Monte Carlo
(MCMC) or other sampling techniques can then
be used to this end (Poon and Domingos, 2006).

3.3 States and actions as relational structures

The specification of Markov Logic rules apply-
ing over complete regions of the state and action
spaces (instead of over single instances) requires
an explicit relational structure over these spaces.

This is realised by factoring the state and ac-
tion spaces into a set of distinct, conditionally in-
dependent features. A state s can be expanded into
a tuple 〈f1, f2, ...fn〉, where each sub-state fi is
assigned a value from a set {v1, v2, ...vm}. Such
structure can be expressed in first-order logic with
a binary predicate fi(s, vj) for each sub-state fi,
where vj is the value of the sub-state fi in s. The
same type of structure can be defined over actions.
This factoring leads to a relational structure of ar-
bitrary complexity, compactly represented by a set
of unary and binary predicates.

For instance, (Young et al., 2010) factors each
dialogue state into three independent parts s =
〈su, au, sd〉, where su is the user goal, au the last
user move, and sd the dialogue history. These
can be expressed in Markov Logic with predicates
such as UserGoal(s, su), LastUserMove(s, au),
or History(s, sd).

3Markov networks are undirected graphical models.



3.4 Relevant action space
For a given state s, the relevant action space
RelMoves(A, s) is defined as:

{am : am ∈ A ∧ RelevantMove(am, s)} (7)

The truth-value of the predicate
RelevantMove(am, s) is determined using a
set of Markov Logic rules dependent on both the
state s and the action am. For a given state s,
the relevant action space is constructed via prob-
abilistic inference, by estimating the probability
P (RelevantMove(am, s)) for each action am,
and selecting the subset of actions for which the
probability is above a given threshold.

Eq. 8 provides a simple example of such
Markov Logic rule:

LastUserMove(s, au) ∧ PolarQuestion(au) ∧
YesNoAnswer(am)→ RelevantMove(am, s) (8)

It defines an admissible dialogue move for a situ-
ation where the user asks a polar question to the
agent (e.g. “do you see my hand?”). The rule speci-
fies that, if a state s contains au as last user move,
and if au is a polar question, then an answer am
of type yes-no is a relevant dialogue move for the
agent. This rule is (implicitly) universally quanti-
fied over s, au and am.

Each of these Markov Logic rules has a weight
attached to it, expressing the strength of the im-
plication. A rule with infinite weight and satisfied
premises will lead to a relevant move with prob-
ability 1. Softer weights can be used to describe
moves which are less relevant but still possible in
a particular context. These weights can either be
encoded by hand or learned from data (how to per-
form this efficiently remains an open question).

3.5 Rules application on POMDP belief state
The previous section assumed that the state s is
known. But the real state of a POMDP is never di-
rectly accessible. The rules we just described must
therefore be applied on the belief state. Ultimately,
we want to define a function Rel : <n → P(A),
which takes as input a point in the belief space
and outputs a set of relevant moves. For efficiency
reasons, this function can be precomputed offline,
by segmenting the state space into distinct regions
and assigning a set of relevant moves to each re-
gion. The function can then be directly called at
runtime by the planning algorithm.

Due to the high dimensionality of the belief
space, the above function must be approximated
to remain tractable. One way to perform this ap-
proximation is to extract, for belief state b, a set
Sm of m most likely states, and compute the set
of relevant moves for each of them. We then de-
fine the global probability estimate of a being a
relevant move given b as such:

P (RelevantMove(a) | b, a) ≈∑
s∈Sm

P (RelevantMove(a, s) | s, a)× b(s) (9)

In the limit wherem→ |S|, the error margin on
the approximation tends to zero.

4 Discussion

4.1 General comments
It is worth noting that the mechanism we just
outlined does not intend to replace the existing
POMDP planning and optimisation algorithms,
but rather complements them. Each step serves a
different purpose: the action space reduction pro-
vides an answer to the question “Is this action rel-
evant?”, while the policy optimisation seeks to an-
swer “Is this action useful?”. We believe that such
distinction between relevance and usefulness is
important and will prove to be beneficial in terms
of tractability.

It is also useful to notice that the Markov Logic
rules we described provides a “positive” definition
of the action space. The rules were applied to pro-
duce an exhaustive list of all admissible actions
given a state, all actions outside this list being de
facto labelled as non-admissible. But the rules can
also provide a “negative” definition of the action
space. That is, instead of generating an exhaustive
list of possible actions, the dialogue system can
initially consider all actions as admissible, and the
rules can then be used to prune this action space
by removing irrelevant moves.

The choice of action filter depends mainly on
the size of the dialogue domain and the availabil-
ity of prior domain knowledge. A “positive” filter
is a necessity for large dialogue domains, as the
action space is likely to grow exponentially with
the domain size and become untractable. But the
positive definition of the action space is also sig-
nificantly more expensive for the dialogue devel-
oper. There is therefore a trade-off between the
costs of tractability issues, and the costs of dia-
logue domain modelling.



4.2 Related Work

There is a substantial body of existing work in
the POMDP literature about the exploitation of
the problem structure to tackle the curse of di-
mensionality (Poupart, 2005; Young et al., 2010),
but the vast majority of these approaches retain
a propositional structure. A few more theoreti-
cal papers also describe first-order MDPs (Wang
et al., 2007), and recent work on Markov Logic
has extended the MLN formalism to include some
decision-theoretic concepts (Nath and Domingos,
2009). To the author’s knowledge, none of these
ideas have been applied to dialogue management.

5 Conclusions

This paper described a new approach to exploit re-
lational models of dialogue structure for control-
ling the action space in POMDPs. This approach
is part of an ongoing work to develop a unified
framework for adaptive dialogue management in
rich, open-ended interactional settings. The dia-
logue manager is being implemented as part of a
larger cognitive architecture for talking robots.

Besides the implementation, future work will
focus on refining the theoretical foundations of
relational POMDPs for dialogue (including how
to specify the transition, observation and reward
functions in such a relational framework), as well
as investigating the use of reinforcement learning
for policy optimisation based on simulated data.
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S. Young, M. Gašić, S. Keizer, F. Mairesse, J. Schatz-
mann, B. Thomson, and K. Yu. 2010. The hidden
information state model: A practical framework for
pomdp-based spoken dialogue management. Com-
puter Speech & Language, 24(2):150–174.


