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Abstract

We propose a novel approach to online estimation of proityblignsity functions, which is based on kernel density
estimation (KDE). The method maintains and updates a noanpetric model of the observed data, from which
the KDE can be calculated. We propose an online bandwidiimasbn approach and a compresgrenitalization
scheme which maintains the KDE’s complexity low. We compheeproposed online KDE to the state-of-the-art
approaches on examples of estimating stationary and radiosary distributions, and on examples of classification.
The results show that the online KDE outperforms or achievesmparable performance to the state-of-the-art and
produces models with a significantly lower complexity wlalkowing online adaptation.
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1. Introduction There have been several studies on howfligiently es-
timate the bandwidth of each component (elg..[7, 8, 9,
Many tasks in machine learning and pattern recogni- [10,/11, 12]) and to incorporate the measurement noise
tion require building models from observing sequences into the estimated bandwidths, e.g./[13]. Several re-
of data. In some cases all the data may be available searchers have recognized the drawbacks of using same
in advance, but processing all data in a batch becomesbandwidth for all components. Namely, it is beneficial
computationally infeasible for large data-sets. Further- to apply small bandwidth to densely populated regions
more, in many real-world scenarios all the data may of the feature space, while larger bandwidths may be ap-
not available in advance, or we even want to observe propriate for sparsely populated regions. As result, non-
some process for an indefinite duration, while continu- stationary bandwidth estimators have been proposed,
ally providing the best estimate of the model from the e.g.[11] 14, 15]. One drawback of the standard KDEs is
data observed so far. We therefore require online con- that their complexity (number of components) increases
struction of models. linearly with the number of the observed data. To rem-
Traditionally, parametric models based on Gaussian edy this increase, methods have been proposed to reduce
mixture models (GMM)|[1] have been applied success- the number of components (compress) either to a prede-
fully to model the data in terms of their probability den- fined value [[16| 17], or to optimize some data-driven
sity functions (pdf). They typically require specifying criteria [18, 19/ 20]. Recently, Rubio and Lobato|[17]
the number of components (or an upper bound) in ad- applied the non-stationary bandwidths frami[15] to the
vance [1| 2] or implementing some data-driven criteria compressed distribution, and reported improved perfor-
for selection of the appropriate number of components mance.
(e.g. [3]). Improper choice of the number of compo-
nents, however, may lead to models which fail to cap-
ture the complete structure of the underlying pdf. Non-
parametric methods such as Parzen kernel density esti
mators (KDE) |4} b, 6] alleviate this problem by treating
each observation as a component in the mixture model.

There have been several attempts to address the on-
line estimation in the context of merging the non-
parametric quality of the kernel density estimators with
the Gaussian mixture models in online applications.
Typically, authors constrain their models by imposing
various assumptions about the estimated distributions.
Arandjelovic et.al.|[21] proposed a scheme for online
“Corresponding author. adaptation of the Gaussian mixture model which can be
URL: http://www.vicos.uni-1j.si (Matej Kristan) updated by observing as little as a single data-point at a
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time. However, a strong restriction is made that data is function and we model theample distributiody a mix-
temporally coherent in feature space, which prevents its ture of Gaussian and Dirac-delta functions. During on-
use in general applications. Priebe and Marchette [22] line operation the sample distribution is updated by each
proposed an online EM algorithm, called active mix- new observation in essentially the following three steps
tures, which allows adaptation from a single observa- (Figure[1a): (1) In the step 1, we update the sample
tion at a time, assumes the data is randomly sampledmodel with the observed data-point. (2) In the step 2,
from the underlying distribution, and includes a heuris- the updated model is used to recalculate the optimal
tic for allocating new components, which makes it less bandwidth for the KDE. (3) In the step 3, the sam-
sensitive to data ordering. Kenji et. al. [23] adapted ple distribution is refined and compressed. This step is
this approach to compression of data-streams by vol- required because, without compression, the number of
ume prototypes. Song et. al. [24] aimed to alleviate the components in our model would increase linearly with
restrictions on data orderings by processing data in largethe observed data. However, it turns out that a valid
blocks. compression at one point in time might become invalid
Deleclerq and Piatel [25] assume each data-point is later, when new data-points arrive. The result of these
a Gaussian with a predefined covariance. All data are invalid compressions is that the model misses the struc-
stored in the model and a heuristic is used to deter- ture of the underlying distribution and produces signifi-
mine when a subset of the data (Gaussians) can be recantly over-smoothed estimates.
placed by a single component. Han et. all[26] pro- To allow the recovery from the early compression, we
posed an online approach inspired by the kernel density keep for each component in the sample distribution an-
estimation in which each new observation is added to other model of the data that generated that component.
the model as a Gaussian kernel with a predefined band-This detailed model is in a form of a mixture model with
width. The model’'s complexity is maintained through at most two components (Figure 1b). The rationale be-
the assumption, that the underlying probabilty density hind constraining the detailed model to two components
function can be approximated figiently well by re- is that this is the simplest detailed model that allows de-
taining only its modes. This approach deteriorates in tection of early over compressions. After the compres-
situations when the assumed predefined bandwidths ofsion and refinement step, the KDE can be calculated as
kernels are too restrictive, and when the distribution is a convolution of the (compressed) sample distribution
locally non-Gaussian (skewed or heavy tailed distribu- with the optimal kernel calculated at step 2.
tion). Our main contribution is the new multivariate online
A positive side of imposing assumptions on the es- kernel density estimator (0KDE), which enables con-
timated distribution is that we can better constrain the struction of a multivariate probability density estimate
problem of estimation and desigifieient algorithms by observing only a single sample at a time and which
for the task at hand. A downside is that once the as- can automatically balance between its complexity and
sumptions are violated, the algorithms will likely break generalization of the observed data points. In contrast to
down and deteriorate in performance. In this paper we the standard bandwidth estimators, which require access
therefore aim at an algorithm, which would be appli- to all observed data, we derive a method which can use
cable to multivariate cases, would be minimally con- a mixture model (sample distribution) instead and can

strained by the assumptions and therefofficiently be applied to multivariate problems. To enable a con-

tackle the dfficulties of online estimation. trolled compression of the sample distribution, we pro-
pose a compression scheme which maintains low dis-

1.1. Our approach tance between the KDE before and after compression.

We propose a new online kernel density estimator To this end, we propose an approximation to the mul-
which is grounded in the following two key ideas. The tivariate Hellinger distance on mixtures of Gaussians.
first key idea is that, unlike the related approaches, we Since over-compressions occur during online estima-
do not attempt to build a model of the target distribution tion, we propose a revitalization scheme, which detects
directly, but rather maintain a non-parametric model of over-compressed components and refines them, thus al-
the data itself in a form of gaample distribution- this lowing efficient adaptation.
model can then be used to calculate the kernel density The remainder of the paper is structured as follows.
estimate of the target distribution. The sample distri- In Sectioi2 we define our model. In Sectidn 3 we derive
bution is constructed by online clustering of the data- a rule for automatic bandwidth selection. We propose
points. The second key idea is that we treat each newthe compression scheme in Sectidn 4, where we also
observation as a distribution in a form of a Dirac-delta address the problem of over-compression. The online
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Figure 1: A three-step summary of the online KDE iteration {dne sample modeS;_1) is updated by a new observatianand compressed into a
new sample modeb). Anillustration of the new sample mod8}) (sample distributiorps(x) along with its detailed modeb; (x)}i-1:4) is shown
in (b).

ProE(t)

KDE (oKDE) algorithm is presented in Sectigh 5. In To maintain a low complexity of the KDE during
Sectior 6 we analyze the influence of parameters, dataonline operation, the sample distributipg(x) is com-
order, and the recostructive and discriminative proper- pressed from time to time by replacing clusters of com-
ties of the oKDE. We compare the oKDE to existing ponents in theps(x) by single Gaussian components.
online and batch state-of-the-art algorithms on exam- Details will be explained later in Sectigh 4. As noted
ples of estimating distributions and on classification ex- in the introduction, compressions at some point in time
amples. We conclude the paper in Secfibn 7. may later become invalid as new data arrive. To de-
tect and recover from these early over-compressions, we
keep an additional model of data for each componentin
2. The model definition the mixture model. We therefore define ouodel of the
observed sampless
As stated in the introduction, we aim at maintaining
a (compressed) model of the observed data-points ina  Smodel = {Ps(X), {0 (X)}iz1:n}, (4)
form of a distribution model, and use this model to cal- ] o ] ]
culate the KDE when required. We therefore start with Whereps(x) is thesample distributiomnda (x) is a mix-
the definition of the distribution of the data-points. Each ture model (with at most two components) for thth
separate data-point can be presented in a distribution ascomponent inps(x) (Figure[1b). To obtain a KDE, we
a single Dirac-delta function, with its probability mass have to compute the optimal bandwidth from all the ob-
concentrated at that data-point. Noting that a Dirac- Served samples, which are now summarized in the sam-
delta can be generally written as a Gaussian with zero Plé modelps(x) (step 2 in Figuré]la). In the following
covariance, we define the model of (potentially com- We Propose a method for calculating this bandwidth.

pressedjl-dimensional data as a4-component Gaus-

sian mixture model . . .
3. Estimation of the bandwidth

N
Ps(X) = Z“i‘pzs‘ (x = xi), (1) If we retained (did not compress) all the observed
=1 samples in the sample model, then the sample distribu-
where tion ps(x) would contain only components with zero co-
variances (i.eXg = 0 for all i) and the KDE([(B) would
be(X — 1) = (27) 2|52 g2 () =) ) be defined appe(X) = SN, aign(x — x). The goal

of all KDE methods is to determine the kernel band-
is a Gaussian kernel centeredualvith covariance ma-  width H such that the distance between fhgg(x) and
trix X. We call ps(x) asample distributiorand a kernel  the unknown pdf(x), that generated the data, is mini-
density estimate (KDE) is defined as a convolution of mized. If the underlying distribution is known, a stan-
ps(x) by a kernel with a covariance matrix (bandwidth) dard approach is to use the Kullback-Leibler divergence

H: to measure the distance, however, in our cas@tkkis
N unknown. In the KDE literature, a classical measure of
A _ _ loseness of the estimatpkpe (X) to the unknown un-
X) = pn(X X) = i (X=x).(3 ¢
Proe(x) = #n(x) * Ps(x) ;a'¢H+ZS( )-3) derlying pdf is theasymptotic mean integrated squared



error (AMISE), defined as ([11], pp-95-98)

AMIS E=(4n)’g|H|’%N;1+%d2 f trP{(HGp(X)}dx, (5)

where tf-} is the trace operatog,(x) is a Hessian of
p(x), andN, = (TN, @?)~L. If we rewrite the bandwidth
matrix in terms of scalg and structureF, i.e., H =
B%F, and assume for now th&tis known, then[(b) is
minimized at scale

Bopt = [d(4n) 2N, R(p, F)] 77, (6)
where the term
R(p,F) = f tr?{FGp(x)}dx (7)

is a functional of the second-order partial derivatives,
Gp(X), of the unknown distributiorp(x). In princi-
ple, this functional could be estimated using the plug-in

methods|[11], however, these are usually numeric, iter-

ative, assume we have accessliothe observed sam-
plesand often stfer from numerical instabilities. In our

where we have used the following definitins

Aj = (Zgi+Ie) 7 Ay = £3B)
m; = AJAjAj. (13)

Note that we still have to determine the pilot band-
width G of pg(x) and the structur& of the bandwidth
matrix H. We use the empirical covariance of the ob-
served sampleﬁsmpto approximate both.

We now resort to a practical assumption [11, 27] that
thestructureof the bandwidtiH can be reasonably well
approximated by the structure of the covariance matrix
of the observed samples, i.E.= )ismp We estimate the
pilot bandwidthG by a multivariate normal-scale rule
for the distribution’s derivative|([11], page 111):

yaa, (14)

. 4
=Y RS
G sm"((d + 2)N,

4. Compression of the sample model

Having approximated the optimal bandwidth, the
next step is to compress and refine the resulting model

case, we maintain only a (compressed) mixture model (gt 3 in Figurglla). The objective of the compression

of the samples, and we require an approximation to the

functional using this mixture model.
We first note thatR(p, F) can be written in terms
of expectations of the derivatives = [ p®(x)p(x)dx

(see, eg./[11]). We can then use the sample distribution

ps(X) to obtain the following approximations
(8

where we approximate the derivative px), pg)(x),
through the following kernel density estimate

p(X) = ps(x) ; POX) ~ pL(x),

N
Po(x) = go(x) * Ps(X) = D @igs, (X—p).  (9)

=1

The estimateps(x) plays a role of the so-callepilot

distributionwith covariance termEg; = G + Xsj andG

is called thepilot bandwidth Using the approximations

in B) we can approximate(p, F) by
R(p.F.G) = f tr{FGpe ()IH{FGp (X)) (10)

Since ps(X) and ps(x) are both Gaussian mixture

models, we can calculate the functiodall(10) using only
matrix algebra:

N N
ﬁ(p, F,G) = Z Z(Iia]‘(ﬁAﬁl(Aij) X

i=1 j=1
[2tr(F?AZ)[1 - 2my] + tr(FAj)[1 - my]?],  (11)

is to approximate the origin&l-component sample dis-
tribution

N
Ps(X) = D Wiy (X — 1) (15)
i=1
by aM-componentM < N, equivalentpg(x)
M
Bs0) = > Wigs, (X — 1), (16)
=1

such that the resulting (compressed) KDE does not
change significantly.  Since a direct optimization
(e.g., [28]) of the parameters ips(X) can be compu-
tationally prohibitive, and prone to slow convergence
even for moderate number of dimensions, we resortto a
clustering-based approach. The main idea is to identify
clusters of components ips(x), such that each cluster
can be sfficiently well approximated by a single com-
ponentinps(x). Let=(M) = {x}j-1.v be a collection of
disjoint sets of indexes, which clustpg(x) into M sub-
mixtures. The sub-mixture corresponding to indexes
i € mj is defined as

Ps(X; 7j) = Z Wiz (X — i)

€T

(17)

1Derivation of [TOETL) is rather laborious, and for convemie we
have included the required derivations in the online supplgal ma-
terial that is accessible from the authors’ homepage.



and is approximated by thth componenW,—Q;ﬁiSj(x - The local clustering erroE(ps(x; 7j), Hopy) tells us the
i1j) of Ps(x). The parameters of thie-th componentare  error induced under the KDE with bandwidttyp, if
defined by matching the first two moments (mean and the clusterps(x; ;) is approximated by a single Gaus-
covariance) [29] of the sub-mixture: sian. We define this error next.

_ R S | B
1= Zien(j)vvl s M =W Zien(j) Wik

. _ il (Y. Y _o.nT
Sj =W Zie”(j)w.(x.w.ﬂi) ;.

4.1. The local clustering error

Let Hopt be the current estimated bandwidth, and let
p1(X) = ps(x; ;) be a cluster, a sub-mixture of the sam-
) . o ple distribution defined by (17), which we want to ap-
For better understanding, we illustrate in Figure 2 an proximate with a single Gaussigm(x) according to

example in which components of a sample distribution (7). we define the local clustering error as the distance
ps(x) are clustered to form another (compressed) sample 1)
21

distributiongs(x) with a smaller number of components. E(p1(X), Hopy) = D(P1kpe(X), Pokpe (X)),
We also show the KDEs corresponding to the original penyeen the correspondifgPES

and the compressed KDE. While the number of compo-
nents in the sample distribution is reduced, the resulting

>

(18)

P1kpe(X) = P1(X) * P,y (X)

KDE does not change significantly.

Pokpe(X) = Po(X) * P,y (X)-
In particular, we can quantify the distance between dis-

tributions using the Hellinger distance [30], which is de-
(él wids (X — ;) él @_,’@g/(x = ﬁ_,‘)\ fined as
ps(x) :> Ps(x) D2(Pukoe(X). Pokoe(X))=
1 1 1
NI /\(\/\ 5 | (Proct9! = pococ(9 (22)
\_ T2 73 =(3) = {ﬂj}f:‘:gj Note that, while the Hellinger distance is a proper met-
ric between distributions and is bounded to interval
4 ps(%) * dpr (%) ) o) [0,1] (see, e.g.,.[30]), it cannot be calculated analyti-
r— Fpm— cally for the mixture models. We therefore calculate
:> KDE its approximation using thenscented transforriB1]
(sed Appendix 1.
N\ / 4.2. Compression by hierarchical error minimization

In principle, the global optimization of (19) would
require evaluation of all possible cluster assignments
E(M) for the number of clustens! ranging from one to
N, which becomes quickly computationally prohibitive.
A significant reduction in complexity of the search can
be obtained by dierarchical approach to cluster dis-
covery. Similar approaches have been previously suc-
cessfully applied for a controlled data compression with
Gaussian mixture models to a predefined number of
clusters|[16, 32].

In our implementation, the hierarchical clustering
proceeds as follows. We start by splitting the entire sam-
ple distributionps(x) into two sub-mixtures using the
Goldberger’s [16] K-means algorithm for mixture mod-
el with K = 2. Each sub-mixture is approximated by

Figure 2: The images illustrate a compression of a four-comept
sample distributionps(x) into a three-component counterpai(x)

using the clustering assignmes(3) = {rj}j-1:3. The left and right
columns show the sample distribution (upper row) and theespond-
ing KDE (lower row) before and after compression, respebtiv

As indicated in Figuré]2 the compression seeks to
identify the clustering assignmeB{M), along with the
minimal number of cluster$, such that the error in-
duced by each cluster isffigiently low, i.e., it does not
exceed a prescribed threshdag,,

M = argminE(E(M)) , st. E(E(M)) < Dy, (19)
M
where we definé&(Z(M)) as the largest local clustering

error E(ps(X; 7j), Hopy) under the clustering assignment
E(M),

’Note that to avoid the singularities associated with the mmm
nents in the sample distribution with zero covariance, thmdéans
algorithm for the Gaussian mixtures is carried out on theespond-

E(S(M)) = max E(ps(x; ;). Hop). (20)  jngKoE.



a single Gaussian and the sub-mixture which yields the components irps(x) for which E(g;(x), Hopy) > Di are
largest local erroré(ps(x;n,-), Hopt) is further splitted removed from the sample distribution and replaced by
into two sub-mixtures. This process is recursively con- the two components of their detailed model. A detailed
tinued until the largest local error is figiently small model is then created for each of the new components.
and the conditiofE(E(M)) < Dy, in (@3) fulfilled. This For example, letv¢s, (x — i) be one of the new com-
approach generates a binary tree Witheafs amongthe ~ ponents. If the determinant & is zero, then this com-

components of the sample distributipg(x), in which ponent corresponds to a single data-point and therefore
the leafs of the tree represent the clustering assignmentsts detailed model is just the component itself. How-

E(M) = {rj}jz1m. Once the clustering(M) is found, ever, in case the determinant is nonzero, it means that
the compressed sample distributipgx) (18) is calcu- the component has been generated through clustering
lated using[{1l7) and{18). of several detailed models in the previous compression

Recall that we keep track of a detailed model for each steps. Its detailed model is then initialized by splitting
component in the sample distribution (see, e.g., Fig- ¢x,(Xx—g;) along its principal axis into a two-component
ure[db). The detailed modgj(x) of the j-th component ~ mixture, whose first two moments match those of the
in the compressed modpl(X) is calculated as follows.  original component. More precisely, [BDUT = X; be
If the setr; contains only a single index, i.etj = {i}, a singular value decomposition &f with eigenvalues
then thej-th component of the compressed sample dis- and eigenvectors ordered by the descending eigenval-
tribution is equal to thé-th component in the original ues. Then the new detailed mixture model is defined
sample distribution and therefore the detailed model re- as
mains unchanged, i.&j(X) = gi(x). On the other hand, )
if ; contains multlple mde_xes, then the_ detailed mod- G(x) = Zak¢2k(x — ), (24)
els corresponding to these indexes are first concatenated =
into a singleextendednixture model p1=FM + i g2 = FM — g,

Qo) = D, Gi(¥). (23) Yy = FCFT; oy = %wi,
i€7ri
Then the required two-component detailed mayjéx)” whereC = diag([3/4, Oix@-1]), M = [0.5, O1x@-1)]",
is g_enera}ted by splittingjex(x) into two sub-mixtures  F = U VD and0y(q_1) is all-zeros row vector of length
again using the Goldberger's K-means and each sub-(d — 1). The entire compression procedure along with

mixture is approximated by a single Gaussian using the revitalization routine is summarized in Algoritfiin 1.
(I8). Note that the detailed model is constrained to at

most two components, since this is the least complex
model which enables detection of the early over com- 5. Online Kernel Density Estimation
pressions as discussed next.
In this section, we describe an iteration of the online

4.3. Revitalizing the sample distribution kernel density estimation, whose steps were outlined in

The compression identifies and compresses thosethe introduction (Figurgl1a). Let us denote the model of
clusters of components whose compression does not in-the samples observed up to time-step () as
troduce a significant error into the KDE with the band-
with Hop estimated at the time of compression. How- Smodeit-1) = {Pst-1)(X)- {Gie-)(X)i=am ) (25)
ever, during online operation, new samples arrive, the
sample distribution anéioy change, and so does the
estimated KDE. Therefore, a compression which may M1
be valid for a KDE at some point in time, may become Pse-1)(X) = Zi:l @idry (X = pi)- (26)
invalid later on. ) )

The over compression can be detected through in- L€t Ni-1 denote thegffective numbenof observatiorfs
spection of thedetailed modebf each component in  UP to time-stept(— 1), let No(-1) be the value of the
the sample distributiomps(x). The local clustering er-

ror E(qi(x), Hop) (20) of each componemt ¢y, (x) in
the sample distribution can be evaluated against its de-___\ote thatif there is no forgetting involved then all the dptnts
are equally important, regardless of the order in which teiye. In

.ta”ed modelg;(x) to verify whether the global cluster- ;s case theféective number of observations is just the number of all
ing error from [19) exceeds the threshddg,. Those observed samples.

whereps-1) is aMi_1-component sample distribution,




Algorithm 1 : Compression of the sample model

Input:
Smodel = {Ps(X), {Gi(X)}i=1.51} -.. the M-component sample
model.
Hopt - . . the current optimal bandwidth.
Dty - .. the maximal allowed local compression error.
Output:
Smodel = {Ps(X), {8} (X)}j=1:m}, . . . the compresseM-component
sample model.
Procedure:

1: Revitalize each i-th component in pg(x) for which
E(6i(x), Hopt) > Din according to Sectiofi 4.3 and replace
the sample model with th&l-component revitalized model:
Smodel < {Ps(X), {0 (X)}i=1n}-

2: Initialize the cluster set:

E(M) = {m}, m ={L,..., N}, M =1

. while Dy, < max E(ps(x; 7)) do
nj€E(M)

Select the cluster with the maximum local
j = arg Ma(ps( ;)
ﬂjE:.
5: Split the sub-mixtureps(x; 7rj) into two sets using the Gold-
berger'sK-meansnj — {71, 7j2}.
6: Update the cluster set:
M e— M +1,E(M) — ({(E(M)\ 7j}, 7j1, 7j2).
7: end while
. Regroup the components pf§(x) according to clusterin@(M)
and construct the compressed sample moeled).”
9: For eachj-th component irpg(x) create its detailed mode (X)
from the reference detailed modéts(x)}i=1.n according to the

clustering=(M).

error:

parameter for bandwidth calculatioN{ in equatiorib)
and letf be a forgetting factr

At time-stept we observe a sample and reestimate
the sample model
Shodelty = {Psg) (X) {Gicy(X)}i=1:m} (@nd hence the KDE)
in the following steps.

Step 1: Update the sample model. The dfective

number of observed samples is augmented using the for-

getting factorN; = Ni_; f + 1 and the weightyy = N;?
of the new sample is computed. The sample distribution
is updated by the new observa

Psiny(X) = (1 — Wo) Psi-1)(X) + Wodo(X — Xt).  (27)
The detailed modedy; (X) = ¢o(X — X¢) corresponding
to x; is added to the existing set of detailed models

{Giy )iz, = HGi (X iz1:mey» Qi (X)), (28)
Thus yielding an updated sample model
Sodetty = {Bsy (X): {Gicy (¥ iy, - (29)

4When estimating stationary distribution, this factor isntl 4ess
than one when estimating a nonstationary distribution.
5Note that(") denotes the updated model before the compression.
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Step 2: Reestimate the bandwidth.The empirical
covariance of the observed sampﬁ@ganp is calculated
by approximatingsg) (x) by a single Gaussian using the
moment matching (18) and the parameter for bandwidth
calculation is updated d¢, = (N _;)(1-Wo)*+wj) ™.
The new optimal bandwidth is then approximated ac-
cording to Sectiohl3 as

Hy = F[d(4n)Y2N.R(p, F, G)] & (30)

with F = Egmp, G = Esmpl i) and with the func-
tional R(p, F, G) calculated according to(L1).

Step 3: Refine and compress the modelAfter the
current bandwidtiH; has been calculated, the sample
modelémodem is refined and compressed, using Algo-
rithm[d, into

Smodelf) = {Ps)(X), {0y (X)fi=1:m, - (31)

In our implementation, the compression is called after
some threshold on number of componévitg has been
exceeded. Note that this threshold does not determine
the number of components in the final model, but rather
influences therequencyat which the compression is
called. To avoid too frequent calls to compression, the
threshold is also allowed to vary during the online op-
eration using a simple hysteresis rule: If the number of
componentd/; still exceeddy,c after the compression,
then the threshold increaskly. < 1.5M, otherwise,
if M; < 2Minc, then it decreaseine < 0.6Minc.
Recalculate the KDE: After the three steps of the
online update have finished, the sample distribution is a
M-component mixture model

M
Pso(X) = > i, (X — ), (32)
i=1

and the current KDBEpkpet(X) is calculated from the
sample distribution according Q] (3).

6. Experimental study

First, we have compared the oKDE’s performance to
the related online and batch methods in density estima-
tion on artificial data-sets (Sectign b.1) and real data-
sets (Sectiof 612). Then we have analyzed the oKDE's
performance on publicly available classification prob-
lems (Sectiod 6]3). Finally, in Sectidn 6.4 and Sec-
tion[6.5 we have analyzed thdfects of compression
and the revitalization scheme in the oKDE. All experi-
ments were performed on a standard 2GHz CPU, 2GB
RAM PC in Matlab.



6.1. Density estimation on artificial data-sets

This experiment was divided into two parts. In the
first part we analyzed estimation of two stationary dis-
tributions and in the second part we analyzed estimation
of a non-stationary distribution. We have compared the
performance of the oKDE with an online method called
the adaptive mixtures [:ﬂ](AM) and with three state-
of-the-art batch KDE methods: Hall et. all [8] plug-in,
Murillo et. al. [12] cross validation (CV) and Girolami  igyre 3: The 1000 sampled data-points along with the efitis-
et. al. [18] reduced-set-density estimator (RSDE). tribution using oKDR o for the sinusoidal (left) and spiral (right)

The first stationary distribution was a two- distribution, respectively.
dimensional sinusoidal distribution defined by

x = [a,sin(3) +w]" (33) For smaller number of samples, the batch CV outper-
a=4(t-1/2); W~ dy() formed the online methods in accuracy, however, at a
v cost of severely increased model complexity. For exam-
with oy, = 0.22. The second distribution was a three- ple, after observing thousand data-points, the complex-
dimensional spiral distribution defined by ity of CV model was one-thousand components, while
1 1 the complexity of the oKDEp; was less than 5% of that.
x = [(13 - Zt) cost), —(13— =t)sin(t),t]" +w (34)  For increasing the number of samples over (approxi-
2 2 . mately 6000), the oKDE started to outperform the CV
w~ ¢z, () ; t ~U(0,14), . ) LA
also in terms of accuracy, while maintaining the num-
whereX,, = diag%, %, %}, and4(1,14) is a uniform ber of components low. While the number of compo-
distribution constrained to interval [04]. Both distri- ~ nents from the 6000th to the 10000th sample increased
butions are visualized in Figui@ 3. A set of ten thousand by 4000 in CV model, this increase was less than ten
test samples was generated from the distribution — the for the oKDEg;. All online methods on average pro-
first ten samples were used for initialization and the rest duced models with a smaller number of components
were used one at a time with the oKDE and AM to ap- than the batch RSDE. In all experiments, the olE
proximate the underlying distribution. The reconstruc- and oKD consistently outperformed the online AM
tive performance of the models was evaluated by the modelin accuracy and on average in complexity.
average negative log-likelihood of additionally sampled  In the second part of the experiment we applied the
twenty thousand observations. This experiment was re- 0KDEg o to approximate a non-stationary distribution,
peated ten times. In the following we will use nota- Which was a mixture of two distributions,
tion oKDEp,,, where ()p,, denotes the used compres-
sion threshold valu®y,. An example of the estimated Po(X. 1) = WD) p1(x) + (1 - W(1)) p2(X). (35)

diStribUtian with O-KDE§,02 after ObserVing a thousand whose mixing We|g|'w(t) was Changing with time_steps
samples is shown in Figute 3. The results are summa-t, The first distribution,p;(x), was a heavily skewed
rized in Tablé 1L. distribution (Figurd#a), while the seconpy(x), was
Among the batch approaches, the CV outperformed g mixture of a uniform and a skewed distribution (Fig-
the other two batch methods in accuracy. While the ad- yre[4c). The weight was setwgt) = 1 for the first 1000
vantage of the batch methods is that they optimize their samples and it gradually decreased to zero for the next
parameters by having access to all the data-points, they7000 samples at rate(t) = w(t — 1)0.995. Thuspo(X, t)
become increasingly slow with increasing the number transited from pure(X) to purepx(x). Figure§#(a,b,c)

of data-points and can also run into computer's mem- show the distribution at time-steps= 1,t = 1800 and
ory constraints. Indeed this was the case for the par-t = 8000, respectively.

ticular implementations of the batch RSDE and Hall,  since the distribution was non-stationary, the forget-
which prohibited estimation for very large sets of sam- ting factor inoKDEgg, was set tof = 0.999. Thus
ples. This is indicated in Tabld 1 by the symb@l.“  the dfective sample size convergeship = 1000. The

oKDEg 2, and AM were initialized from the first three
5The adaptive mixturegAM) approach[[22] is essentially an on- samples and the restwere added one at a time. The qual-

line EM algorithm for Gaussian mixture models with an auttma it}/ of estimation at time'StepwaS .measured by the
component-allocation heuristic. distance between the current estimate pg(, t). The




Table 1: Average negative log-likelihoodZ (along with+ one standard deviation) w.r.t. the number of observed sssnplVe also show the
model complexity (humber of components) in the parentheBles symbol /” indicates that the estimator could not be calculated duaeémory
limitations.

results for the 2D sinus distribution (Figurk 3a)
Batch 50 samples 1000 samples 6000 samples 8000 samples 1000esamp
(&Y 1.7+0.1(50+0)  1.3+0.0(1-10°+0) 1.3:0.0(610°+0) 1.3+0.0810°+0)  1.4+0.0(10%+0)
Hall 2.4+0.0(50:0)  2.0+0.0(1:10°+0) 1.8+:0.0(610%+0) 1.8+:0.0(810%+0) /
RSDE 2.0:0.2(23:4)  1.3:0.0(380:11)  1.3:0.0(2.210°+47) / /
Online 50 samples 1000 samples 6000 samples 8000 samples 1000esamp
AM 2.2+0.1(113) 1.7:0.1(22c4) 1.5:0.1(38:6) 1.5:0.1(41£6) 1.5:0.1(43:6)
OKDEgo1 | 2.0£0.0716+£2)  1.5:0.0(34+2) 1.3:0.0(48+3) 1.3+0.0(51+3) 1.3£0.0(54+3)
0KDEggy | 2.0+0.1(12:2) 1.5:0.0(21£2) 1.5:0.0(28:2) 1.4+0.0(29:3) 1.4:0.0(30:2)
0KDEggs | 2.0£0.1(8:1) 1.7£0.0(11£2) 1.6£0.0(13:2) 1.6£0.0(14:2) 1.6£0.0(14£2)
0KDEgos | 2.0+0.1(6£1) 1.7:0.0(9:1) 1.7+0.0(10:1) 1.6:0.0(11+1) 1.6:0.0(11£2)
results for the 3D spiral distribution (Figuré 3b)
Batch 50 samples 1000 samples 6000 samples 8000 samples 1000esamp
CcVv 8.1+0.3(50+:0) 6.6+0.0(10°+0) 6.5+0.0(6 - 10°+0) 6.5:0.08-10°+0)  6.5+0.0(10%+0)
Hall 8.1+0.2(50:0) 6.7+0.0(13+0) 6.7£0.0(6- 10°+0) / /
RSDE 8.6:0.7(30:8)  6.7+0.0(516:83)  6.6:0.0(26 - 103+17) /
Online 50 samples 1000 samples 6000 samples 8000 samples 1000esamp
AM 8.6+0.16(18:3) 6.9:0.1(42:4) 6.6:0.1(64+6) 6.6:0.1(68:6) 6.6:0.1(72:6)
0KDEgo1 | 8.0+0.2(24+2) 6.8£0.0(46+2) 6.5:0.0(51+2) 6.5:0.0(52+2) 6.5£0.0(52+1)
OKDEgp2 | 8.0+0.3(19:2) 6.8:0.0(29:1) 6.5:0.0(32:1) 6.5:0.0(33t1) 6.5:0.0(33:1)
0KDEgos | 8.1+0.3(14:1) 6.8:0.0(20:1) 6.7+0.0(23:2) 6.7+0.0(24:1) 6.6:0.0(24:1)
0KDEgps | 8.1+0.3(13t1) 6.9:0.0(181) 6.8:0.0(2%1) 6.7+0.0(2%11) 6.7+0.0(2%1)

performance of theK DEp o, was compared to AM and
the two sliding-window batch methods, CV and Hall
batch KDEs, which have been computed using the last
1000 observed samples. The forgetting factor in the AM
was set as in theKDEp go. Figurd® summarizes the re-
sults. (a) (b)
Both batch methods outperformed the AM model in or
accuracy, however, they produced models of signifi-
cantly greater complexity. On average, thi€ DEg g,
outperformed both, CV and Hall, batch KDEs by main-
taining lower error and using a three orders of magni-
tude smaller number of components. The approxima- (c)
tion error of models produced by theKDEjp, was ] _ S
lower for 1000 samples, became slighly greater than FOE.% T pieses e nonsiaonay deriuton 4 @)
that of the batch KDEs for 2000 and 3000 samples, and ok pE after observing the 8000th sample (d). The componeirttseo
then became again lower. We have noticed that in SsomeoKDE model in (d) are depicted by solid thin lines and the oKDE is
(rare) cases, the CV produced an under-smoothed estj-shown in solid thick line, while the reference distributisndepicted
mate of the distribution which temporarily increased the 2 &dashed green line.
L, error. On the other hand, this behavior has not been
observed for the oKDE, AM and the Hall's method. In
all experiments, theK DEg o, outperformed AM.

estimated the density for each class separately. The data
in each data-set were randomly reordered, 75% of the
data were used for training and the rest for testing. For
each of the data-sets we have generated twelve such ran-
We have repeated the density estimation experimentdom partitionings. The oKDE and the AM were initial-

on several real-life data-sets from the UCI machine ized from the first ten samples and the rest were added
learning repositoryl [33] which eliered in the length,  one at a time. The compression threshold in the oKDE
data dimensionality as well as in the number of classes. was set tdy, = 0.1. To measure the estimation quality,
The general properties of the data-sets are summarizedve have computed the average negative log-likelihood
in Table[2. For the density estimation experiment, we of the test data, while the Bayes information criterion
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6.2. Density estimation on real data-sets
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Figure 5: Thel; estimation error (left) and the number of compo-
nents (right) w.r.t the time-step, along with one-stanetadiation
bars. The results are shown for the oKDE (full line), CV (dzbh
Hall (dotted dark) and AM (dotted bright).

(BIC) was used to measure the traffelbetween the
model’s complexity and its ability to explain the input
data.

Table 2: Properties of the data-sets used in the experimigmtreal-
life data. The number of samples in each dataset, the dioraiy
and the number of classes are denotetllgyNp andNc, respectively.

dataset Ns Np Nc
Iris 150 4 3
Pima 768 8 2
Wine 178 13 3
WineRed 1599 11 6
WineWhite 4898 11 7
Letter 20000 16 26
Breast cancer (Cancer) 285 30 2
Image segmentation (Seg) 2310 18 7
Steel plates (Plates) 1941 27 7
Yeast 1484 8 10

The results of the experiments after observing all the
data-points are summarized in Table 3. Among the on-
line methods, the oKDE models obtained better trade-
off between their complexity and the ability to explain
the input data. This is indicated by the fact that the
oKDEs obtained on average a lower BIC than AM.
From Table€_B we can also see that in nearly all exam-
ples the oKDE produced models with lower complex-
ity than the AM, while achieving a lower average neg-
ative log-likelihood. Compared to the batch methods,

the CV and Hall achieved the lowest average negative

log-likelihood, while the oKDE outperformed them in
BIC measure. The RSDE was comparable to oKDE in
BIC measure, but oKDE nearly always outperformed
the RSDE by achieving a lower average negative log
likelihood.

An important aspect of online methods, apart from
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the estimation quality, is the resulting model's complex-
ity and the time required to perform an update when
a new data-point arrives. Note that, unlike the batch
methods, the oKDE does not store all the observed data-
points, but maintains their compact representation in
a form of a sample distribution. To enable recovery
from early over-compression, each component in the
sample distribution stores its two-component represen-
tation. Therefore, the model’'s complexity and storage
requirements are proportional to the number of compo-
nents in the model, in particular, the storage require-
ments are twice the model's complexity. The com-
plexity of the model directly fiects the oKDE's update
speed. Most of the time, the computational complex-
ity is dominated by the functiondl{IL1) in the bandwidth
calculation, which scales @XM + N), whereN is

the number of components in the model (complexity).
From time to time, the model is compressed and then
the complexity is dominated by the evaluation of the
clustering error[{22), which again scales in number of
components, and the compression threshold. The re-
quired storage size and the complexity are visualized for
all data-sets in the first two columns of Figlife 6. We see
that the complexity and storage requirements of O0KDE’s
models were on average lower than AM’s models. The
oKDE’'s models were also significantly less complex
than the models produced by batch methods except for
the RSDE. For reference, we also provide the measured
times required for a single update in the last column of
Figure[®, but these have to be interpreted with caution.
Namely, all the code was written in Matlab, except from
the Hall's estimator and parts of our bandwidth estima-
tor that were written in C. Our implementation of the
oKDE is a non-optimized research code and thus heav-
ily redundant, but we believe that some measurements
of the speed will be nevertheless interesting for practi-
cal considerations. To measure the times required for a
single update, we have therefore calculated the time re-
quired for a single update, averaged over the last twenty
updates in the experiments. We see that the AM allowed
the fastest updates. The oKDE was faster than the batch
methods in all cases except for the dataset Iris and Wine,
where the Hall's method was slightly faster. Averaged
over the datasets, the oKDE require@Dseconds for
updating a distribution by a new observation.

6.3. Online estimation of classifiers

To analyze the discriminative properties of the oKDE,
we have repeated the experiment from the previous sec-
tion with the online and batch methods to construct clas-
sifiers from the publicly-available datasets described in



Table 3: The average negative log likelihoed’, BIC and the number of components in the models. For eaclsetatde two best-performing
methods are in bold and the asteriskgi)gn denotes that theftitrence between the best and second best method is stiyistigaificant.

dataset 0KDEp1 AM cVv RSDE Hall
-L
Iris 84 +37 24+ 04 2.7+0.9 25+ 09 20+0.7
Pima 30.1+0.3 301+0.5 295+ 05 384+ 113 291+01"
Wine 238+3.9 123+0.8 116+ 15 123+19 9.6 + 0.4°
WRed -242+ 11 -274+0.2 -272+10 -123+4.3 -274+0.7
WWhit 133+0.3 145+ 0.4 116 + 04" 913+ 446 119+ 01
Letter 84+0.1 114+ 4.7 6.4+0.3" 1422 + 130 102+0.1
BCW 275+6.9 979+ 231 89+31 181+54 111+ 22
Seg -166+ 1.8 -121+38 -253+23 469+ 359 -230+ 1.7
Plates -35+20 449+ 116 -112+ 15" 541+ 189 -95+0.8
Yeast 112+ 11 39+16 30+21 628 + 30.7 6.0+ 05
BIC
Iris 5595+ 37 4377+ 70 8183+ 72 1766+ 58° 8242+ 49
Pima 57280+ 250° 138444+ 224 194657 144 65092+ 13944 196005+ 44
Wine 28395+ 46 25854+ 167 30582+ 72 21225+ 299 31255+ 87
WRed 53195+ 466 -23710+ 199 579462+ 341 74706+ 9205 586600 309

WWhit | 260724+ 769 1560692+ 1327 2391884- 654 817970+ 312008 2417345+ 531
Letter | 2353134+ 1849 14228704+ 41592 2201659@ 7341 5130425+ 387481 22240178+ 994
BCW 615967+ 770° 1267175+ 6253 1269862 1611 814150+ 2477 1287566+ 862
Seg 331204+ 1150 1776111+ 7393 23419333878 342581+ 104979 2357185+ 1208
Plates | 1069658+ 3291 4239189+ 13418  421683@ 11345 600487+ 156551 4247392+ 1533
Yeast 101473+ 290° 194856+ 3530 348154+ 4585 156825+ 16827 357542+ 996
Number of components per model

Iris 27+ 4 16+ 3 38+ 0 11+ 8 38+0

Pima 42+ 8 165+ 47 288+ 89 48+ 27 288+ 89
Wine 43+ 6 32+ 6 44+ 7 37+10 44+ 7

WRed 42+ 24 13+ 4 200+ 215 31+ 32 200+ 215
WWhit 37+ 26 343+ 365 525+ 596 41+ 40 525+ 596
Letter 60+ 10 321+ 120 577+ 17 24+ 22 577+ 17
BCW 102+ 9 214+ 56 214+ 56 186+ 57 214+ 56
Seg 43+ 10 181+ 24 248+ 0 23+ 10 248+ 0

Plates 60+ 17 206+ 155 208+ 156 23+ 16 208+ 156
Yeast 29+ 13 53+ 51 111+ 124 42+ 61 111+ 124

Table2. For the baseline classification, we have applied average best classification. The oKDE outperformed
a multiclass SVM with an RBF kernel [34]. The clas- batch RSDE, and produced a comparable classification
sification performance of the KDE-based methods and to the SVM, CV and Hall's KDE. An important ob-
the AM was tested using a simple Bayesian criterion  servation is that the oKDE produced comparable per-
. formance to the batch methods, eventhough the oKDE
y= arglmaxp(x|c|)p(c|). (36) was constructed by observing only a single sample at a

) time. In contrast, the SVM and the batch KDEs opti-
The parameter for the SVM kernel was determined sep- nizeq their structure by having access to all the sam-

arately in each experiment via cross validation on the e Note also that the 0KDE's classification perfor-
raining data set. , mance was comparable to SVM, eventhough the oKDE
The results are shown in Talile 4. We can see that g i, its nature reconstructive, while the SVM optimizes
the oKDE achieved a better classification than the AM s strycture to maximize discrimination. Note also, that
for all data-sets except for the lris, for which the per- e complexity of the models leamt by batch KDEs is
formance was matched. In additional analysis we have generally larger than that of the oKDE. For example, for
verified that in all datasets except for the Iris, the im- theletter dataset, the oKDE required one ninth as many

proved performance was also statistically significant. components to achieve a comparable performance to the
The batch methods, SVM, CV and Hall produced on
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Figure 6: The estimated time required for a single-classatgtfom
a single sample, the average storage requirement and thel'snaxt
erage complexity.

CV and Hall's KDE. While, compared to the oKDE, the
RSDE retained only half as many components for the
letter dataset, the RSDE’s classification performance
was also significantly lower.

6.4. Influence of the compression parametegs &nd
data order

The only free parameter in the oKDE is the com-
pression parametddy,, which quantifies the local ap-
proximation error during compression (and revitaliza-
tion) in terms of the unscented Hellinger distance. The
aim of this experiment was therefore to illustrate how
the diferent values of this parametefect the oKDE's
performance. The experiments involved approximating
a spiral-shaped two-dimensional stationary distribution
defined as

x = [(1 + 6) cosP), (1 + 6) sin@©)]" +w
W~ ¢y,(); 0~ U0, 10)

37)

whereX,, = diag0.92,0.9%} and/(0, 10) is a uniform
distribution on interval [010]. A set of 1000 sam-
ples was generated from this distribution — the first ten
samples were used for initialization and the rest were
used one at a time to update the oKDE. After all 1000

threshold, the number of components decreased, while
the approximation error increased. The oKDE outper-
formed the AM in accuracy foby, values smaller than
0.03. Note that the AM-estimated models contained on
average 45 components, while for example, the oKDE
with Dy, = 0.02 produced more accurate models which
contained on average 20 components. We show typical
estimated models for AM and oKDE in the first row of
FigureT.

oKDEo.o1

oKDEo.o5

ndom order

sortedinward  sorted outward

Figure 7: Mixture models of the spiral distribution forfldirent or-
derings of data: random (first row), sorted outward (secomg and
sorted inward (third row). Each model is shown as a decontpose
mixture model, and as an image of its distribution.

6.4.1. Sorted data

To analyze the performance of the oKDE w.r.t. the
different data orderings, we have performed two vari-
ants of the previous experiment in which we enforced
a predefined order to the observed samples. The order
was enforced by deterministically selecting the values
of the position parametetr in (34) along the spiral at
equal distances from the interval [(0].

In the first variant, the position valu@swere orga-
nized in an ascending order, thus yielding @rward
ordering of data-points from the spiral’s center, while
the second variation used a descending order of posi-
tion values, which yielded aimward ordering. In both
orderings, the early samples indicated a small scale of
the estimated distribution, and the entire scale became

samples have been observed, the reconstructive perforevident slowly at later time-steps. In the outward order-
mance of the KDE model was evaluated as the averageing the scale became apparent only slowly, since a large

negative log-likelihood of additionally drawn 20,000
samples.

The performance of the oKDE with various compres-
sion values was compared with the AM. The perfor-
mance results are shown under theeridom ordet label
in Table®. We see that the oKDE with the smallest com-

number of samples are concentrated at the center of the
spiral. The results for the outward and inward ordering
are given in the second and third columns of Tdlle 5.
With increasingDy, the oKDE produced models with
lower number of components at a cost of larger recon-
struction error. With respect to the valuesof,, the

pression threshold produced the most accurate modelsnumber of components remained comparable with the

with 37 components. By increasing the compression
12

random sampling. On the other hand, the AM produced



Table 4: Average classification results along wittone standard deviation. With each classification perfooeame also show the model’s
complexity in parentheses. For each dataset, the two beakbdeare in bold and the asterisk §)gn denotes that theftiérence between the best

and second best method is statistically significant.

dataset oKDEp 1 AM CcVv RSDE Hall SVM

Iris 97+ 3(27+4) 97+ 3(16+ 3) 96+ 3(38+0) 96+ 2(11+8) 97+ 3(38+0) 96+ 4(16+ 6)
Pima 72+2(42+ 8) 69+ 3(165+ 47) 72+ 2(288+ 89) 65+ 3(48+ 27) 74+ 2(288+ 89) 78+ 3(163+ 4)*
Wine 94+ 3(43+ 6) 91+ 4(32+6) 92+ 6(44+7) 91+ 5(37+ 10) 96+ 3(44+7) 96+ 3(24+8)
WRed | 64+ 2(42+24) 57+3(13+4) 64+ 1(200+ 215) 44+ 4(31+32) 66+2(200+215* 63+ 3(173+179)
WWhit | 55+ 1(37+26) 53+ 2(343+365) 62+ 1(525+ 596) 25+ 6(41+ 40) 62+ 2(525+ 596) 60+ 2(473+523)
Letter 96+ 0(60+ 10) 91+ 3(321+120) 96+ 0(577+17) 53+ 2(24+ 22) 95+ 0(577+ 17) 96+ 0(311+ 60)*
BCW 93+2(102+9) 90+ 3(214+ 56) 96+ 2(214+56) 94+ 2(186+57) 91+ 2(214+ 56) 97+ 2(52+7)*
Seg 93+1(43+10) 90+ 2(181+ 24) 94+ 1(248+ 0) 79+ 3(23+ 10) 94+ 1(248+ 0) 94+ 1(83+48)
Plates | 72+2(60+17) 68+2(206+155) 71+2(208+156) 56+ 4(23+ 16) 65+ 1(208+ 156) 76+ 2(146+ 137"
Yeast 51+ 2(29+ 13) 48+ 5(53+ 51) 49+ 4(111+ 124) 35+ 10(42+61) 25+ 2(111+124) 60+ 1(91+ 105"

Table 5: The average negative log-likelihoed/)) and the number of components in the modig(,) for o0KDEp,, and AM w.r.t. to the three data

orders: random, center-to-outermost and outermost+iteceand averaged over thetdrent orders

[meanz standard deviation]
random order sorted outward sorted inward averaged

method -L Ncmp -L Ncmp -L Ncmp -L Ncmp

AM 545+ 004 433+725 546+001 216+125 541+0.01 115+6.3 544+ 0.04 125+716
0KDEgp1 | 5.39:0.01  37.7+322 5.39:0.01 489+26 5.39:0.01 368+28 5.39:0.01 41.1+6.2
oKDEgpy | 539+001 196+143 539+0.01 203+248 541+0.01 178+138 5.4:0.01 19.22.1
oKDEgps | 548+0.03 118+144 563+0.09 897+15 576+006 75+15 5.63:0.13 9.432.3
oKDEgps | 555+ 0.06 10+1.76 583+ 007 503+14 584+0.04 52+103 5.74:0.15 6.742.71

models whose complexity was significantly larger. This
can be attributed directly to the missing scale informa-
tion in the early samples, which initially caused alloca-
tion of a larger number of componentsin the AM model.

With increasing the compression thresh@lg, the
degradation of the models in oKDE was faster for in-
ward than outward ordering. The reason is that greater
Dy, allows grater loss of information about the struc-
ture of the distribution during online estimation. In the
absence of the structure information the models deterio-
rate. To estimate how the oKDE performs regardless of
the data order, the results oveffdrent orders were av-
eraged and are shown in the last column of Thble 5. We
see that on average the oKDE with, < 0.03 outper-
forms the AM by producing models with smaller errors
and smaller number of components. With increasing the
compression values, the number of components further
decreases, while the errors increase.

6.5. Influence of the revitalization scheme

To analyze the benefit of the revitalization scheme
from Sectior 4.8, we generated 1000 samples from a
heavily skewed one-dimensional reference distribution

wheresg is the L; distance between the reference dis-
tribution and the model without revitalizatios, is the

L, distance between the reference distribution and the
model with revitalization. The indexepresents the ob-
served sample. Figuké 8 (right column) shows these re-
sults for the diferent values of the compression thresh-
old Dy,. We can see that the improvement of using the
revitalization scheme increases with the number of sam-
ples regardless of the compression threstinld For
example, after observing 1000 samples, the improve-
ment for all tested valueBy, was between 45% and
65%.

Ly
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Figure 8: The left plot shows the; distance errors for theKDE

with the revitalization scheme (dark blue), and without tbxétaliza-
tion scheme (bright cyan), w.r.t. the number of samplegnp, The

(see, Figurélda), and used one sample at a time with theright graph shows the improvements in terms of error redactim-

oKDE to approximate this distribution. One experiment

provement factog;). The results fooKDEg g1, 0KDEp 2, 0KDEg o4

was performed with the revitalization scheme and one andoKDEggs are depicted by solid, dashed, dash-dotted and dotted

without it. We have calculated the improvement fac-
torsy; w.r.t. the number of samples as= (& — &) /&,

13

lines, respectively.



7. Conclusion densely populated regions. Another reason is that the
data within a neighborhood of a component better de-

We have proposed an approach for a kernel den- termine the local structure (the local manifolds) of the

sity estimation which can be applied in online opera- density function. We believe that applying the method-

tion. The central point of the proposed scheme is that ology from [15/ 17] to oKDE would be beneficial and it

it does not store all the observed samples, but main- is likely to improve the performance in density estima-

tains only their compressed model and uses this modeltion.

to compute the kernel density estimate of the underly-  Note that the update procedure in the oKDE makes

ing distribution. During online operation, the low com- it a reconstructive estimator, since the compression al-

plexity is automatically maintained by a new compres- gorithm penalizes errors in the reconstruction. We can

sionfrevitalization scheme. The approach was analyzed think about the compression algorithm itself as an ap-

using examples of online estimation of stationary as proximate optimization, which seeks a minimum of the

well as non-stationary distributions and on classification reconstructive cost function. We believe that replac-

examples. In all experiments, the oKDE was able to ing this cost function with some other criterion would

produce comparable or better results to the state-of-the-yjeld different properties of the online KDE, without

art online and batch approaches, while producing mod- modification of the optimization algorithm. Indeed, we

els whose complexity was significantly lower. have already explored a possibility of replacing this cost
The only parameter in the oKDE is the compres- function with a criterion that, instead of reconstruction

sion threshold that specifies the allowed loss of recon- errors, it penalizes discriminative errors|in/[35] and ob-

structive properties during compression. Experiments tained encouraging preliminary results. We believe that

showed that a low value dby, produces models with  this venue of research will lead to online probabilistic

larger number of components and influences the recon-discriminative models based on the kernel density es-

struction properties of the estimated model. Ifthe task at timation, which will be based on the theory presented

hand involves estimation of probability density function here. These are the topics of our ongoing research.

for reconstruction, or compression of the input stream,

then choosing a low value may be advantageous. On

the other hand, Iarger va]ues imply gregter_smoothing Appendix A. The unscented Hellinger distance

and therefore regularization of the distribution. Note

that for the classification tasks, loss of reconstructive

information does not necessarily mean loss of discrim- ~ The unscented transform is a special case of a Gaus-

inative properties. In fact, we have observed in the ex- sian quadrature, which, similarly to Monte Carlo in-

periments, that choosing a vallly, = 0.1, yielded a tegration, relies on evaluating integrals using carefully

very good recognition performance at a small number placed points, calledthe sigma pointsover the sup-

of components. At the same time, the models retained port of the integral. Therefore, as in Monte Carlo

enough reconstructive information tofSaiently adapt ~ integration [[35], we define amportancedistribution
to the new data. For online construction of classifiers Po(X) = ¥(P1(X) + p2(X)), which contains the support
we therefore propose settiidy, = 0.1. Alternatively, of both, pi(x) as well aspy(x), with y set such that

the thresholdDy, might be adapted during the online [ Po(X)dx = 1. In our casepy() is a Gaussian mix-
operation of the model. For example, one could keep in ture model of a form
memory a small set of past observed values and validatePo(X) = Y14 Wiés, (X — Xi), and we rewrite the Hellinger
the estimated model at a few compression thresholds, todistancel(22) into
select the best performing threshold.

Due to the nature of the compression algorithm, dif- D(p1, p2)
ferent components in the oKDE havefdrent covari-
ances and thus the result is equivalent to a KDE with 1N
a non-stationary bandwith. Nevertheless, related re- = 3 Z"Vi f 9(X)¢s (X — Xi)dXA.1)
searchl[14, 15, 17] shows that further adjusting the non- i=1
stationary bandwidths by taking into account the lo-
cal structure of data (e.g., nearest neighbors) can sig-where we have defineg(x) = W . Note
nificantly improve the density estimation. The rea- that the integrals il (All) are simply expectations over
son is that the regions of feature space with few sam- a nonlinearly transformed Gaussian random variable
ples require more intensive smoothing than the more and therefore admit to the unscented transform. Accord-
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ing to [31] we then have [10]

[11]

NI

N 2d+1
DX(p1, P2) ~ 5 > wi Y oPx)Dwi,  (A2)
i=1 j=0 [12]
where (DX, DWW} are weighted sets of sigma
points corresponding to thieth Gaussiangs, (X — Xi),

- [13]
and are defined as

Oy —y - Oqpr — X
Xl XI ] (WI 1+ K [14]
(j)Xi =Xj + §j V1+ K( \/d):i i [15]
. - kK o _J 1 5 j=d
Wi= 2(1+«) "’ 8= { -1 ; otherwise (A-3) [16]

with « = max([Q m- d]), and (VE)); is thej-th column ~ [17]

of the matrix square root &;. Concretely, letUDU"

be a singular value decomposition of covariance matrix [1g]
¥, suchthat) = {U4,...,Uq} andD = diag1y, ..., A4},
then (\/f)k = v/ AUk. In line with the discussion on the
properties of the unscented transform.in [31], we set the
parametemtom = 3.

[19]
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