
Multivariate Online Kernel Density Estimation with Gaussian Kernels

Matej Kristana,b,1, Aleš Leonardisa, Danijel Skočaja

aFaculty of Computer and Information Science, University ofLjubljana, Slovenia
bFaculty of Electrical Engineering, University of Ljubljana, Slovenia

Abstract

We propose a novel approach to online estimation of probability density functions, which is based on kernel density
estimation (KDE). The method maintains and updates a non-parametric model of the observed data, from which
the KDE can be calculated. We propose an online bandwidth estimation approach and a compression/revitalization
scheme which maintains the KDE’s complexity low. We comparethe proposed online KDE to the state-of-the-art
approaches on examples of estimating stationary and non-stationary distributions, and on examples of classification.
The results show that the online KDE outperforms or achievesa comparable performance to the state-of-the-art and
produces models with a significantly lower complexity whileallowing online adaptation.

Keywords: Online models, probability density estimation, Kernel density estimation, Gaussian mixture models.

1. Introduction

Many tasks in machine learning and pattern recogni-
tion require building models from observing sequences
of data. In some cases all the data may be available
in advance, but processing all data in a batch becomes
computationally infeasible for large data-sets. Further-
more, in many real-world scenarios all the data may
not available in advance, or we even want to observe
some process for an indefinite duration, while continu-
ally providing the best estimate of the model from the
data observed so far. We therefore require online con-
struction of models.

Traditionally, parametric models based on Gaussian
mixture models (GMM) [1] have been applied success-
fully to model the data in terms of their probability den-
sity functions (pdf). They typically require specifying
the number of components (or an upper bound) in ad-
vance [1, 2] or implementing some data-driven criteria
for selection of the appropriate number of components
(e.g. [3]). Improper choice of the number of compo-
nents, however, may lead to models which fail to cap-
ture the complete structure of the underlying pdf. Non-
parametric methods such as Parzen kernel density esti-
mators (KDE) [4, 5, 6] alleviate this problem by treating
each observation as a component in the mixture model.

∗Corresponding author.
URL: http://www.vicos.uni-lj.si (Matej Kristan)

There have been several studies on how to efficiently es-
timate the bandwidth of each component (e.g., [7, 8, 9,
10, 11, 12]) and to incorporate the measurement noise
into the estimated bandwidths, e.g. [13]. Several re-
searchers have recognized the drawbacks of using same
bandwidth for all components. Namely, it is beneficial
to apply small bandwidth to densely populated regions
of the feature space, while larger bandwidths may be ap-
propriate for sparsely populated regions. As result, non-
stationary bandwidth estimators have been proposed,
e.g. [11, 14, 15]. One drawback of the standard KDEs is
that their complexity (number of components) increases
linearly with the number of the observed data. To rem-
edy this increase, methods have been proposed to reduce
the number of components (compress) either to a prede-
fined value [16, 17], or to optimize some data-driven
criteria [18, 19, 20]. Recently, Rubio and Lobato [17]
applied the non-stationary bandwidths from [15] to the
compressed distribution, and reported improved perfor-
mance.

There have been several attempts to address the on-
line estimation in the context of merging the non-
parametric quality of the kernel density estimators with
the Gaussian mixture models in online applications.
Typically, authors constrain their models by imposing
various assumptions about the estimated distributions.
Arandjelović et.al. [21] proposed a scheme for online
adaptation of the Gaussian mixture model which can be
updated by observing as little as a single data-point at a

Accepted to Pattern Recognition (DOI:10.1016/j.patcog.2011.03.019) March 18, 2011

time. However, a strong restriction is made that data is
temporally coherent in feature space, which prevents its
use in general applications. Priebe and Marchette [22]
proposed an online EM algorithm, called active mix-
tures, which allows adaptation from a single observa-
tion at a time, assumes the data is randomly sampled
from the underlying distribution, and includes a heuris-
tic for allocating new components, which makes it less
sensitive to data ordering. Kenji et. al. [23] adapted
this approach to compression of data-streams by vol-
ume prototypes. Song et. al. [24] aimed to alleviate the
restrictions on data orderings by processing data in large
blocks.

Deleclerq and Piater [25] assume each data-point is
a Gaussian with a predefined covariance. All data are
stored in the model and a heuristic is used to deter-
mine when a subset of the data (Gaussians) can be re-
placed by a single component. Han et. al. [26] pro-
posed an online approach inspired by the kernel density
estimation in which each new observation is added to
the model as a Gaussian kernel with a predefined band-
width. The model’s complexity is maintained through
the assumption, that the underlying probabilty density
function can be approximated sufficiently well by re-
taining only its modes. This approach deteriorates in
situations when the assumed predefined bandwidths of
kernels are too restrictive, and when the distribution is
locally non-Gaussian (skewed or heavy tailed distribu-
tion).

A positive side of imposing assumptions on the es-
timated distribution is that we can better constrain the
problem of estimation and design efficient algorithms
for the task at hand. A downside is that once the as-
sumptions are violated, the algorithms will likely break
down and deteriorate in performance. In this paper we
therefore aim at an algorithm, which would be appli-
cable to multivariate cases, would be minimally con-
strained by the assumptions and therefore efficiently
tackle the difficulties of online estimation.

1.1. Our approach
We propose a new online kernel density estimator

which is grounded in the following two key ideas. The
first key idea is that, unlike the related approaches, we
do not attempt to build a model of the target distribution
directly, but rather maintain a non-parametric model of
the data itself in a form of asample distribution– this
model can then be used to calculate the kernel density
estimate of the target distribution. The sample distri-
bution is constructed by online clustering of the data-
points. The second key idea is that we treat each new
observation as a distribution in a form of a Dirac-delta

function and we model thesample distributionby a mix-
ture of Gaussian and Dirac-delta functions. During on-
line operation the sample distribution is updated by each
new observation in essentially the following three steps
(Figure 1a): (1) In the step 1, we update the sample
model with the observed data-point. (2) In the step 2,
the updated model is used to recalculate the optimal
bandwidth for the KDE. (3) In the step 3, the sam-
ple distribution is refined and compressed. This step is
required because, without compression, the number of
components in our model would increase linearly with
the observed data. However, it turns out that a valid
compression at one point in time might become invalid
later, when new data-points arrive. The result of these
invalid compressions is that the model misses the struc-
ture of the underlying distribution and produces signifi-
cantly over-smoothed estimates.

To allow the recovery from the early compression, we
keep for each component in the sample distribution an-
other model of the data that generated that component.
This detailed model is in a form of a mixture model with
at most two components (Figure 1b). The rationale be-
hind constraining the detailed model to two components
is that this is the simplest detailed model that allows de-
tection of early over compressions. After the compres-
sion and refinement step, the KDE can be calculated as
a convolution of the (compressed) sample distribution
with the optimal kernel calculated at step 2.

Our main contribution is the new multivariate online
kernel density estimator (oKDE), which enables con-
struction of a multivariate probability density estimate
by observing only a single sample at a time and which
can automatically balance between its complexity and
generalization of the observed data points. In contrast to
the standard bandwidth estimators, which require access
to all observed data, we derive a method which can use
a mixture model (sample distribution) instead and can
be applied to multivariate problems. To enable a con-
trolled compression of the sample distribution, we pro-
pose a compression scheme which maintains low dis-
tance between the KDE before and after compression.
To this end, we propose an approximation to the mul-
tivariate Hellinger distance on mixtures of Gaussians.
Since over-compressions occur during online estima-
tion, we propose a revitalization scheme, which detects
over-compressed components and refines them, thus al-
lowing efficient adaptation.

The remainder of the paper is structured as follows.
In Section 2 we define our model. In Section 3 we derive
a rule for automatic bandwidth selection. We propose
the compression scheme in Section 4, where we also
address the problem of over-compression. The online

2

input output

Hopt

Hopt

S(t−1)

zt

S̃(t)

St

pKDE(t)

(a) (b)

Figure 1: A three-step summary of the online KDE iteration (a). The sample modelS(t−1) is updated by a new observationzt and compressed into a
new sample modelS(t). An illustration of the new sample modelS(t) (sample distributionps(x) along with its detailed model{qi (x)}i=1:4) is shown
in (b).

KDE (oKDE) algorithm is presented in Section 5. In
Section 6 we analyze the influence of parameters, data
order, and the recostructive and discriminative proper-
ties of the oKDE. We compare the oKDE to existing
online and batch state-of-the-art algorithms on exam-
ples of estimating distributions and on classification ex-
amples. We conclude the paper in Section 7.

2. The model definition

As stated in the introduction, we aim at maintaining
a (compressed) model of the observed data-points in a
form of a distribution model, and use this model to cal-
culate the KDE when required. We therefore start with
the definition of the distribution of the data-points. Each
separate data-point can be presented in a distribution as
a single Dirac-delta function, with its probability mass
concentrated at that data-point. Noting that a Dirac-
delta can be generally written as a Gaussian with zero
covariance, we define the model of (potentially com-
pressed)d-dimensional data as anN-component Gaus-
sian mixture model

ps(x) =
N
∑

i=1

αiφΣsi (x − xi), (1)

where

φΣ(x − µ) = (2π)−
d
2 |Σ|− 1

2 e(− 1
2 (x−µ)T

Σ
−1(x−µ)) (2)

is a Gaussian kernel centered atµ with covariance ma-
trix Σ. We call ps(x) a sample distributionand a kernel
density estimate (KDE) is defined as a convolution of
ps(x) by a kernel with a covariance matrix (bandwidth)
H:

p̂KDE(x) = φH(x) ∗ ps(x) =
N
∑

i=1

αiφH+Σsi (x − xi).(3)

To maintain a low complexity of the KDE during
online operation, the sample distributionps(x) is com-
pressed from time to time by replacing clusters of com-
ponents in theps(x) by single Gaussian components.
Details will be explained later in Section 4. As noted
in the introduction, compressions at some point in time
may later become invalid as new data arrive. To de-
tect and recover from these early over-compressions, we
keep an additional model of data for each component in
the mixture model. We therefore define ourmodel of the
observed samplesas

Smodel= {ps(x), {qi(x)}i=1:N}, (4)

whereps(x) is thesample distributionandqi(x) is a mix-
ture model (with at most two components) for thei-th
component inps(x) (Figure 1b). To obtain a KDE, we
have to compute the optimal bandwidth from all the ob-
served samples, which are now summarized in the sam-
ple modelps(x) (step 2 in Figure 1a). In the following
we propose a method for calculating this bandwidth.

3. Estimation of the bandwidth

If we retained (did not compress) all the observed
samples in the sample model, then the sample distribu-
tion ps(x) would contain only components with zero co-
variances (i.e,Σsi = 0 for all i) and the KDE (3) would
be defined as ˆpKDE(x) =

∑N
i=1 αiφH(x − xi). The goal

of all KDE methods is to determine the kernel band-
width H such that the distance between the ˆpKDE(x) and
the unknown pdfp(x), that generated the data, is mini-
mized. If the underlying distribution is known, a stan-
dard approach is to use the Kullback-Leibler divergence
to measure the distance, however, in our case thep(x) is
unknown. In the KDE literature, a classical measure of
closeness of the estimator ˆpKDE(x) to the unknown un-
derlying pdf is theasymptotic mean integrated squared

3

error (AMISE), defined as ([11], pp.95-98)

AMIS E= (4π)−
d
2 |H |− 1

2 N−1
α +

1
4

d2
∫

tr2{HGp(x)}dx, (5)

where tr{·} is the trace operator,Gp(x) is a Hessian of
p(x), andNα = (

∑N
i=1α

2
i)−1. If we rewrite the bandwidth

matrix in terms of scaleβ and structureF, i.e., H =

β2F, and assume for now thatF is known, then (5) is
minimized at scale

βopt = [d(4π)
d
2 NαR(p,F)]−

1
d+4 , (6)

where the term

R(p,F) =
∫

tr2{FGp(x)}dx (7)

is a functional of the second-order partial derivatives,
Gp(x), of the unknown distributionp(x). In princi-
ple, this functional could be estimated using the plug-in
methods [11], however, these are usually numeric, iter-
ative, assume we have access toall the observed sam-
plesand often suffer from numerical instabilities. In our
case, we maintain only a (compressed) mixture model
of the samples, and we require an approximation to the
functional using this mixture model.

We first note thatR(p,F) can be written in terms
of expectations of the derivativesψr =

∫

p(r)(x)p(x)dx
(see, eg., [11]). We can then use the sample distribution
ps(x) to obtain the following approximations

p(x) ≈ ps(x) ; p(r)(x) ≈ p(r)
G (x), (8)

where we approximate the derivative ofp(x), p(r)
G (x),

through the following kernel density estimate

pG(x) = φG(x) ∗ ps(x) =
N
∑

j=1

α jφΣg j (x − µ j). (9)

The estimatepG(x) plays a role of the so-calledpilot
distributionwith covariance termsΣg j = G+Σs j andG
is called thepilot bandwidth. Using the approximations
in (8) we can approximateR(p,F) by

R̂(p,F,G) =
∫

tr{FGpG (x)}tr{FGps(x)}. (10)

Since ps(x) and pG(x) are both Gaussian mixture
models, we can calculate the functional (10) using only
matrix algebra:

R̂(p,F,G) =
N
∑

i=1

N
∑

j=1

αiα jφA−1
i j

(∆i j) ×

[2tr(F2A2
i j)[1 − 2mi j] + tr2(FA i j)[1 −mi j]2], (11)

where we have used the following definitions1

A i j = (Σgi + Σsj)−1 , ∆i j = µi − µ j(12)

mi j = ∆
T
i j A i j∆i j . (13)

Note that we still have to determine the pilot band-
width G of pG(x) and the structureF of the bandwidth
matrix H. We use the empirical covariance of the ob-
served sampleŝΣsmp to approximate both.

We now resort to a practical assumption [11, 27] that
thestructureof the bandwidthH can be reasonably well
approximated by the structure of the covariance matrix
of the observed samples, i.e.,F = Σ̂smp. We estimate the
pilot bandwidthG by a multivariate normal-scale rule
for the distribution’s derivative ([11], page 111):

G = Σ̂smp(
4

(d+ 2)Nα

)
2

d+4 . (14)

4. Compression of the sample model

Having approximated the optimal bandwidth, the
next step is to compress and refine the resulting model
(step 3 in Figure 1a). The objective of the compression
is to approximate the originalN-component sample dis-
tribution

ps(x) =
N
∑

i=1

wiφΣsi(x − µi) (15)

by aM-component,M < N, equivalent ˆps(x)

p̂s(x) =
M
∑

j=1

ŵ jφΣ̂s j
(x − µ̂ j), (16)

such that the resulting (compressed) KDE does not
change significantly. Since a direct optimization
(e.g., [28]) of the parameters in ˆps(x) can be compu-
tationally prohibitive, and prone to slow convergence
even for moderate number of dimensions, we resort to a
clustering-based approach. The main idea is to identify
clusters of components inps(x), such that each cluster
can be sufficiently well approximated by a single com-
ponent inp̂s(x). LetΞ(M) = {π j} j=1:M be a collection of
disjoint sets of indexes, which clusterps(x) into M sub-
mixtures. The sub-mixture corresponding to indexes
i ∈ π j is defined as

ps(x; π j) =
∑

i∈π j

wiφΣsi(x − µi) (17)

1Derivation of (10-11) is rather laborious, and for convenience we
have included the required derivations in the online supplemental ma-
terial that is accessible from the authors’ homepage.

4

and is approximated by thej-th component ˆw jφΣ̂s j
(x −

µ̂ j) of p̂s(x). The parameters of thej− th component are
defined by matching the first two moments (mean and
covariance) [29] of the sub-mixture:

ŵ j =
∑

i∈π(j)
wi , µ̂ j = ŵ−1

j

∑

i∈π(j)
wi µ̂i

Σ̂ j = ŵ−1
j

∑

i∈π(j)
wi(Σi + µiµ

T
i) − µ̂ j µ̂

T
j . (18)

For better understanding, we illustrate in Figure 2 an
example in which components of a sample distribution
ps(x) are clustered to form another (compressed) sample
distributionp̂s(x) with a smaller number of components.
We also show the KDEs corresponding to the original
and the compressed KDE. While the number of compo-
nents in the sample distribution is reduced, the resulting
KDE does not change significantly.

original compressed

Figure 2: The images illustrate a compression of a four-component
sample distributionps(x) into a three-component counterpart ˆps(x)
using the clustering assignmentΞ(3) = {π j } j=1:3. The left and right
columns show the sample distribution (upper row) and the correspond-
ing KDE (lower row) before and after compression, respectively.

As indicated in Figure 2 the compression seeks to
identify the clustering assignmentΞ(M), along with the
minimal number of clustersM, such that the error in-
duced by each cluster is sufficiently low, i.e., it does not
exceed a prescribed thresholdDth,

M̂ = arg min
M

E(Ξ(M)) , s.t. E(Ξ(M̂)) ≤ Dth, (19)

where we defineE(Ξ(M)) as the largest local clustering
error Ê(ps(x; π j),Hopt) under the clustering assignment
Ξ(M),

E(Ξ(M)) = max
π j∈Ξ(M)

Ê(ps(x; π j),Hopt). (20)

The local clustering error̂E(ps(x; π j),Hopt) tells us the
error induced under the KDE with bandwidthHopt, if
the clusterps(x; π j) is approximated by a single Gaus-
sian. We define this error next.

4.1. The local clustering error
Let Hopt be the current estimated bandwidth, and let

p1(x) = ps(x; π j) be a cluster, a sub-mixture of the sam-
ple distribution defined by (17), which we want to ap-
proximate with a single Gaussianp0(x) according to
(18). We define the local clustering error as the distance

Ê(p1(x),Hopt) = D(p1KDE(x), p0KDE(x)), (21)

between the correspondingKDEs

p1KDE(x) = p1(x) ∗ φHopt(x)

p0KDE(x) = p0(x) ∗ φHopt(x).

In particular, we can quantify the distance between dis-
tributions using the Hellinger distance [30], which is de-
fined as

D2(p1KDE(x), p0KDE(x))
∆
=

1
2

∫

(p1KDE(x)
1
2 − p0KDE(x)

1
2)2dx. (22)

Note that, while the Hellinger distance is a proper met-
ric between distributions and is bounded to interval
[0, 1] (see, e.g., [30]), it cannot be calculated analyti-
cally for the mixture models. We therefore calculate
its approximation using theunscented transform[31]
(see Appendix A).

4.2. Compression by hierarchical error minimization
In principle, the global optimization of (19) would

require evaluation of all possible cluster assignments
Ξ(M) for the number of clustersM ranging from one to
N, which becomes quickly computationally prohibitive.
A significant reduction in complexity of the search can
be obtained by ahierarchical approach to cluster dis-
covery. Similar approaches have been previously suc-
cessfully applied for a controlled data compression with
Gaussian mixture models to a predefined number of
clusters [16, 32].

In our implementation, the hierarchical clustering
proceeds as follows. We start by splitting the entire sam-
ple distributionps(x) into two sub-mixtures using the
Goldberger’s [16] K-means algorithm for mixture mod-
els2 with K = 2. Each sub-mixture is approximated by

2Note that to avoid the singularities associated with the compo-
nents in the sample distribution with zero covariance, the K-means
algorithm for the Gaussian mixtures is carried out on the correspond-
ing KDE.

5

a single Gaussian and the sub-mixture which yields the
largest local errorÊ(ps(x; π j),Hopt) is further splitted
into two sub-mixtures. This process is recursively con-
tinued until the largest local error is sufficiently small
and the conditionE(Ξ(M)) ≤ Dth in (19) fulfilled. This
approach generates a binary tree withM̂ leafs among the
components of the sample distributionps(x), in which
the leafs of the tree represent the clustering assignments
Ξ(M̂) = {π j} j=1:M. Once the clusteringΞ(M̂) is found,
the compressed sample distribution ˆps(x) (16) is calcu-
lated using (17) and (18).

Recall that we keep track of a detailed model for each
component in the sample distribution (see, e.g., Fig-
ure 1b). The detailed model ˆq j(x) of the j-th component
in the compressed model ˆps(x) is calculated as follows.
If the setπ j contains only a single index, i.e.,π j = {i},
then thej-th component of the compressed sample dis-
tribution is equal to thei-th component in the original
sample distribution and therefore the detailed model re-
mains unchanged, i.e., ˆq j(x) = qi(x). On the other hand,
if π j contains multiple indexes, then the detailed mod-
els corresponding to these indexes are first concatenated
into a singleextendedmixture model

q̂ jext(x) =
∑

i∈π j

qi(x). (23)

Then the required two-component detailed model ˆq j(x)
is generated by splitting ˆq jext(x) into two sub-mixtures
again using the Goldberger’s K-means and each sub-
mixture is approximated by a single Gaussian using
(18). Note that the detailed model is constrained to at
most two components, since this is the least complex
model which enables detection of the early over com-
pressions as discussed next.

4.3. Revitalizing the sample distribution
The compression identifies and compresses those

clusters of components whose compression does not in-
troduce a significant error into the KDE with the band-
with Hopt estimated at the time of compression. How-
ever, during online operation, new samples arrive, the
sample distribution andHopt change, and so does the
estimated KDE. Therefore, a compression which may
be valid for a KDE at some point in time, may become
invalid later on.

The over compression can be detected through in-
spection of thedetailed modelof each component in
the sample distributionps(x). The local clustering er-
ror Ê(qi(x),Hopt) (20) of each componentwiφΣsi (x) in
the sample distribution can be evaluated against its de-
tailed modelqi(x) to verify whether the global cluster-
ing error from (19) exceeds the thresholdDth. Those

components inps(x) for which Ê(qi(x),Hopt) > Dth are
removed from the sample distribution and replaced by
the two components of their detailed model. A detailed
model is then created for each of the new components.
For example, letwiφΣi (x − µi) be one of the new com-
ponents. If the determinant ofΣi is zero, then this com-
ponent corresponds to a single data-point and therefore
its detailed model is just the component itself. How-
ever, in case the determinant is nonzero, it means that
the component has been generated through clustering
of several detailed models in the previous compression
steps. Its detailed model is then initialized by splitting
φΣi (x−µi) along its principal axis into a two-component
mixture, whose first two moments match those of the
original component. More precisely, letUDUT = Σi be
a singular value decomposition ofΣi with eigenvalues
and eigenvectors ordered by the descending eigenval-
ues. Then the new detailed mixture model is defined
as

qi(x) =
2
∑

k=1

αkφΣk(x − µk), (24)

µ1 = FM + µi ; µ2 = FM − µi ,

Σk = FCFT ; αk =
1
2

wi ,

whereC = diag([3/4, 01×(d−1)]), M = [0.5, 01×(d−1)]T,
F = U

√
D and01×(d−1) is all-zeros row vector of length

(d − 1). The entire compression procedure along with
the revitalization routine is summarized in Algorithm 1.

5. Online Kernel Density Estimation

In this section, we describe an iteration of the online
kernel density estimation, whose steps were outlined in
the introduction (Figure 1a). Let us denote the model of
the samples observed up to time-step (t − 1) as

Smodel(t−1) = {ps(t−1)(x), {qi(t−1)(x)}i=1:Mt−1}, (25)

whereps(t−1) is aMt−1-component sample distribution,

ps(t−1)(x) =
∑Mt−1

i=1
αiφΣsi (x − µi). (26)

Let Nt−1 denote theeffective numberof observations3

up to time-step (t − 1), let Nα(t−1) be the value of the

3Note that if there is no forgetting involved then all the data-points
are equally important, regardless of the order in which theyarrive. In
this case the effective number of observations is just the number of all
observed samples.

6

Algorithm 1 : Compression of the sample model
Input:

S̃model = {p̃s(x), {q̃i (x)}i=1:M̃} . . . the M̃-component sample
model.
Hopt . . . the current optimal bandwidth.
Dth . . . the maximal allowed local compression error.

Output:
Ŝmodel= {p̂s(x), {q̂j (x)} j=1:M}, . . . the compressedM-component
sample model.
Procedure:

1: Revitalize each i-th component in ˜ps(x) for which
Ê(q̃i (x),Hopt) > Dth according to Section 4.3 and replace
the sample model with theN-component revitalized model:
Smodel←− {ps(x), {qi (x)}i=1:N}.

2: Initialize the cluster set:
Ξ(M) = {π1}, π1 = {1, . . . ,N}, M = 1

3: while Dth < max
π j∈Ξ(M)

Ê(ps(x; π j)) do

4: Select the cluster with the maximum local error:
π j = arg max

π j∈Ξ(M)
Ê(ps(x; π j))

5: Split the sub-mixtureps(x; π j) into two sets using the Gold-
berger’sK-means:π j −→ {π j1, π j2}.

6: Update the cluster set:
M ←− M + 1,Ξ(M)←− {{Ξ(M) \ π j }, π j1, π j2}.

7: end while
8: Regroup the components ofps(x) according to clusteringΞ(M)

and construct the compressed sample model ˆps(x).
9: For eachj-th component in ˆps(x) create its detailed model ˆqj (x)

from the reference detailed models{qi (x)}i=1:N according to the
clusteringΞ(M).

parameter for bandwidth calculation (Nα in equation 6)
and let f be a forgetting factor4.

At time-stept we observe a samplext and reestimate
the sample model
Smodel(t) = {ps(t)(x), {qi(t)(x)}i=1:Mt } (and hence the KDE)
in the following steps.

Step 1: Update the sample model.The effective
number of observed samples is augmented using the for-
getting factor,Nt = Nt−1 f + 1 and the weightw0 = N−1

t
of the new sample is computed. The sample distribution
is updated by the new observation5 as

p̃s(t)(x) = (1− w0)ps(t−1)(x) + w0φ0(x − xt). (27)

The detailed model ˜qM̃t
(x) = φ0(x − xt) corresponding

to xt is added to the existing set of detailed models

{q̃i(t)(x)}i=1:M̃t
= {{qi(x)}i=1:Mt−1, q̃M̃t

(x)}, (28)

Thus yielding an updated sample model

S̃model(t) = {p̃s(t)(x), {q̃i(t)(x)}i=1:M̃t
}. (29)

4When estimating stationary distribution, this factor is 1 and less
than one when estimating a nonstationary distribution.

5Note that ˜(·) denotes the updated model before the compression.

Step 2: Reestimate the bandwidth.The empirical
covariance of the observed samplesΣ̂smp is calculated
by approximating ˜ps(t)(x) by a single Gaussian using the
moment matching (18) and the parameter for bandwidth
calculation is updated asNαt = (N−1

α(t−1)(1−w0)2+w2
0)−1.

The new optimal bandwidth is then approximated ac-
cording to Section 3 as

H t = F[d(4π)d/2NαtR̂(p,F,G)]
−2
d+4 (30)

with F = Σ̂smp, G = Σ̂smp(4
(2+d)Nαt

)
2

d+4 , and with the func-

tional R̂(p,F,G) calculated according to (11).
Step 3: Refine and compress the model.After the

current bandwidthH t has been calculated, the sample
modelS̃model(t) is refined and compressed, using Algo-
rithm 1, into

Smodel(t) = {ps(t)(x), {qi(t)(x)}i=1:Mt }. (31)

In our implementation, the compression is called after
some threshold on number of componentsMthc has been
exceeded. Note that this threshold does not determine
the number of components in the final model, but rather
influences thefrequencyat which the compression is
called. To avoid too frequent calls to compression, the
threshold is also allowed to vary during the online op-
eration using a simple hysteresis rule: If the number of
componentsMt still exceedsMthc after the compression,
then the threshold increasesMthc← 1.5Mthc, otherwise,
if Mt <

1
2 Mthc, then it decreasesMthc← 0.6Mthc.

Recalculate the KDE: After the three steps of the
online update have finished, the sample distribution is a
Mt-component mixture model

ps(t)(x) =
Mt
∑

i=1

αiφΣsi (x − µt), (32)

and the current KDEpKDEt(x) is calculated from the
sample distribution according to (3).

6. Experimental study

First, we have compared the oKDE’s performance to
the related online and batch methods in density estima-
tion on artificial data-sets (Section 6.1) and real data-
sets (Section 6.2). Then we have analyzed the oKDE’s
performance on publicly available classification prob-
lems (Section 6.3). Finally, in Section 6.4 and Sec-
tion 6.5 we have analyzed the effects of compression
and the revitalization scheme in the oKDE. All experi-
ments were performed on a standard 2GHz CPU, 2GB
RAM PC in Matlab.

7

6.1. Density estimation on artificial data-sets

This experiment was divided into two parts. In the
first part we analyzed estimation of two stationary dis-
tributions and in the second part we analyzed estimation
of a non-stationary distribution. We have compared the
performance of the oKDE with an online method called
the adaptive mixtures [22]6 (AM) and with three state-
of-the-art batch KDE methods: Hall et. al. [8] plug-in,
Murillo et. al. [12] cross validation (CV) and Girolami
et. al. [18] reduced-set-density estimator (RSDE).

The first stationary distribution was a two-
dimensional sinusoidal distribution defined by

x = [a, sin(3a) + w]T (33)

a = 4(t − 1/2) ; w ∼ φσw(·)

with σw = 0.22. The second distribution was a three-
dimensional spiral distribution defined by

x = [(13− 1
2

t) cos(t),−(13− 1
2

t) sin(t), t]T + w (34)

w ∼ φΣw(·) ; t ∼ U(0, 14),

whereΣw = diag{ 14 ,
1
4 ,

1
4}, andU(1, 14) is a uniform

distribution constrained to interval [0, 14]. Both distri-
butions are visualized in Figure 3. A set of ten thousand
test samples was generated from the distribution – the
first ten samples were used for initialization and the rest
were used one at a time with the oKDE and AM to ap-
proximate the underlying distribution. The reconstruc-
tive performance of the models was evaluated by the
average negative log-likelihood of additionally sampled
twenty thousand observations. This experiment was re-
peated ten times. In the following we will use nota-
tion oKDEDth, where (·)Dth denotes the used compres-
sion threshold valueDth. An example of the estimated
distributions with oKDE0.02 after observing a thousand
samples is shown in Figure 3. The results are summa-
rized in Table 1.

Among the batch approaches, the CV outperformed
the other two batch methods in accuracy. While the ad-
vantage of the batch methods is that they optimize their
parameters by having access to all the data-points, they
become increasingly slow with increasing the number
of data-points and can also run into computer’s mem-
ory constraints. Indeed this was the case for the par-
ticular implementations of the batch RSDE and Hall,
which prohibited estimation for very large sets of sam-
ples. This is indicated in Table 1 by the symbol “/”.

6The adaptive mixtures(AM) approach [22] is essentially an on-
line EM algorithm for Gaussian mixture models with an automatic
component-allocation heuristic.

Figure 3: The 1000 sampled data-points along with the estimated dis-
tribution using oKDE0.02 for the sinusoidal (left) and spiral (right)
distribution, respectively.

For smaller number of samples, the batch CV outper-
formed the online methods in accuracy, however, at a
cost of severely increased model complexity. For exam-
ple, after observing thousand data-points, the complex-
ity of CV model was one-thousand components, while
the complexity of the oKDE0.01 was less than 5% of that.
For increasing the number of samples over (approxi-
mately 6000), the oKDE started to outperform the CV
also in terms of accuracy, while maintaining the num-
ber of components low. While the number of compo-
nents from the 6000th to the 10000th sample increased
by 4000 in CV model, this increase was less than ten
for the oKDE0.01. All online methods on average pro-
duced models with a smaller number of components
than the batch RSDE. In all experiments, the oKDE0.01

and oKDE0.02 consistently outperformed the online AM
model in accuracy and on average in complexity.

In the second part of the experiment we applied the
oKDE0.02 to approximate a non-stationary distribution,
which was a mixture of two distributions,

p0(x, t) = w(t)p1(x) + (1− w(t))p2(x), (35)

whose mixing weightw(t) was changing with time-steps
t. The first distribution,p1(x), was a heavily skewed
distribution (Figure 4a), while the second,p2(x), was
a mixture of a uniform and a skewed distribution (Fig-
ure 4c). The weight was set tow(t) = 1 for the first 1000
samples and it gradually decreased to zero for the next
7000 samples at ratew(t) = w(t − 1)0.995. Thusp0(x, t)
transited from purep1(x) to purep2(x). Figures 4(a,b,c)
show the distribution at time-stepst = 1, t = 1800 and
t = 8000, respectively.

Since the distribution was non-stationary, the forget-
ting factor in oKDE0.02 was set tof = 0.999. Thus
the effective sample size converges toNt = 1000. The
oKDE0.02 and AM were initialized from the first three
samples and the rest were added one at a time. The qual-
ity of estimation at time-stept was measured by theL1

distance between the current estimate andp0(x, t). The

8

Table 1: Average negative log-likelihood−L (along with± one standard deviation) w.r.t. the number of observed samples. We also show the
model complexity (number of components) in the parentheses. The symbol “/” indicates that the estimator could not be calculated due tomemory
limitations.

results for the 2D sinus distribution (Figure 3a)
Batch 50 samples 1000 samples 6000 samples 8000 samples 10000 samples

CV 1.7±0.1(50±0) 1.3±0.0(1·103±0) 1.3±0.0(6·103±0) 1.3±0.0(8·103±0) 1.4±0.0(104±0)
Hall 2.4±0.0(50±0) 2.0±0.0(1·103±0) 1.8±0.0(6·103±0) 1.8±0.0(8·103±0) /

RSDE 2.0±0.2(23±4) 1.3±0.0(380±11) 1.3±0.0(2.2·103±47) / /

Online 50 samples 1000 samples 6000 samples 8000 samples 10000 samples
AM 2.2±0.1(11±3) 1.7±0.1(22±4) 1.5±0.1(38±6) 1.5±0.1(41±6) 1.5±0.1(43±6)
oKDE0.01 2.0±0.07(16±2) 1.5±0.0(34±2) 1.3±0.0(48±3) 1.3±0.0(51±3) 1.3±0.0(54±3)
oKDE0.02 2.0±0.1(12±2) 1.5±0.0(21±2) 1.5±0.0(28±2) 1.4±0.0(29±3) 1.4±0.0(30±2)
oKDE0.04 2.0±0.1(8±1) 1.7±0.0(11±2) 1.6±0.0(13±2) 1.6±0.0(14±2) 1.6±0.0(14±2)
oKDE0.05 2.0±0.1(6±1) 1.7±0.0(9±1) 1.7±0.0(10±1) 1.6±0.0(11±1) 1.6±0.0(11±2)

results for the 3D spiral distribution (Figure 3b)
Batch 50 samples 1000 samples 6000 samples 8000 samples 10000 samples

CV 8.1±0.3(50±0) 6.6±0.0(103±0) 6.5±0.0(6 · 103±0) 6.5±0.0(8 · 103±0) 6.5±0.0(104±0)
Hall 8.1±0.2(50±0) 6.7±0.0(103±0) 6.7±0.0(6· 103±0) / /

RSDE 8.6±0.7(30±8) 6.7±0.0(516±83) 6.6±0.0(2.6 · 103±17) /

Online 50 samples 1000 samples 6000 samples 8000 samples 10000 samples
AM 8.6±0.16(18±3) 6.9±0.1(42±4) 6.6±0.1(64±6) 6.6±0.1(68±6) 6.6±0.1(72±6)
oKDE0.01 8.0±0.2(24±2) 6.8±0.0(46±2) 6.5±0.0(51±2) 6.5±0.0(52±2) 6.5±0.0(52±1)
oKDE0.02 8.0±0.3(19±2) 6.8±0.0(29±1) 6.5±0.0(32±1) 6.5±0.0(33±1) 6.5±0.0(33±1)
oKDE0.04 8.1±0.3(14±1) 6.8±0.0(20±1) 6.7±0.0(23±2) 6.7±0.0(24±1) 6.6±0.0(24±1)
oKDE0.05 8.1±0.3(13±1) 6.9±0.0(18±1) 6.8±0.0(21±1) 6.7±0.0(21±1) 6.7±0.0(21±1)

performance of theoKDE0.02 was compared to AM and
the two sliding-window batch methods, CV and Hall
batch KDEs, which have been computed using the last
1000 observed samples. The forgetting factor in the AM
was set as in theoKDE0.02. Figure 5 summarizes the re-
sults.

Both batch methods outperformed the AM model in
accuracy, however, they produced models of signifi-
cantly greater complexity. On average, theoKDE0.02

outperformed both, CV and Hall, batch KDEs by main-
taining lower error and using a three orders of magni-
tude smaller number of components. The approxima-
tion error of models produced by theoKDE0.02 was
lower for 1000 samples, became slightly greater than
that of the batch KDEs for 2000 and 3000 samples, and
then became again lower. We have noticed that in some
(rare) cases, the CV produced an under-smoothed esti-
mate of the distribution which temporarily increased the
L1 error. On the other hand, this behavior has not been
observed for the oKDE, AM and the Hall’s method. In
all experiments, theoKDE0.02 outperformed AM.

6.2. Density estimation on real data-sets

We have repeated the density estimation experiment
on several real-life data-sets from the UCI machine
learning repository [33] which differed in the length,
data dimensionality as well as in the number of classes.
The general properties of the data-sets are summarized
in Table 2. For the density estimation experiment, we

(a) (b)

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) (d)

Figure 4: The phases of the non-stationary distribution att = 1 (a),
t = 1800 (b) andt = 8000 (c), and the estimated distribution with
oKDE after observing the 8000th sample (d). The components of the
oKDE model in (d) are depicted by solid thin lines and the oKDE is
shown in solid thick line, while the reference distributionis depicted
by a dashed green line.

estimated the density for each class separately. The data
in each data-set were randomly reordered, 75% of the
data were used for training and the rest for testing. For
each of the data-sets we have generated twelve such ran-
dom partitionings. The oKDE and the AM were initial-
ized from the first ten samples and the rest were added
one at a time. The compression threshold in the oKDE
was set toDth = 0.1. To measure the estimation quality,
we have computed the average negative log-likelihood
of the test data, while the Bayes information criterion

9

Figure 5: TheL1 estimation error (left) and the number of compo-
nents (right) w.r.t the time-step, along with one-standard-deviation
bars. The results are shown for the oKDE (full line), CV (dashed),
Hall (dotted dark) and AM (dotted bright).

(BIC) was used to measure the tradeoff between the
model’s complexity and its ability to explain the input
data.

Table 2: Properties of the data-sets used in the experiment with real-
life data. The number of samples in each dataset, the dimensionality
and the number of classes are denoted byNS, ND andNC, respectively.

dataset NS ND NC

Iris 150 4 3
Pima 768 8 2
Wine 178 13 3
WineRed 1599 11 6
WineWhite 4898 11 7
Letter 20000 16 26
Breast cancer (Cancer) 285 30 2
Image segmentation (Seg) 2310 18 7
Steel plates (Plates) 1941 27 7
Yeast 1484 8 10

The results of the experiments after observing all the
data-points are summarized in Table 3. Among the on-
line methods, the oKDE models obtained better trade-
off between their complexity and the ability to explain
the input data. This is indicated by the fact that the
oKDEs obtained on average a lower BIC than AM.
From Table 3 we can also see that in nearly all exam-
ples the oKDE produced models with lower complex-
ity than the AM, while achieving a lower average neg-
ative log-likelihood. Compared to the batch methods,
the CV and Hall achieved the lowest average negative
log-likelihood, while the oKDE outperformed them in
BIC measure. The RSDE was comparable to oKDE in
BIC measure, but oKDE nearly always outperformed
the RSDE by achieving a lower average negative log
likelihood.

An important aspect of online methods, apart from

the estimation quality, is the resulting model’s complex-
ity and the time required to perform an update when
a new data-point arrives. Note that, unlike the batch
methods, the oKDE does not store all the observed data-
points, but maintains their compact representation in
a form of a sample distribution. To enable recovery
from early over-compression, each component in the
sample distribution stores its two-component represen-
tation. Therefore, the model’s complexity and storage
requirements are proportional to the number of compo-
nents in the model, in particular, the storage require-
ments are twice the model’s complexity. The com-
plexity of the model directly affects the oKDE’s update
speed. Most of the time, the computational complex-
ity is dominated by the functional (11) in the bandwidth
calculation, which scales asO(N2−N

2 + N), whereN is
the number of components in the model (complexity).
From time to time, the model is compressed and then
the complexity is dominated by the evaluation of the
clustering error (22), which again scales in number of
components, and the compression threshold. The re-
quired storage size and the complexity are visualized for
all data-sets in the first two columns of Figure 6. We see
that the complexity and storage requirements of oKDE’s
models were on average lower than AM’s models. The
oKDE’s models were also significantly less complex
than the models produced by batch methods except for
the RSDE. For reference, we also provide the measured
times required for a single update in the last column of
Figure 6, but these have to be interpreted with caution.
Namely, all the code was written in Matlab, except from
the Hall’s estimator and parts of our bandwidth estima-
tor that were written in C. Our implementation of the
oKDE is a non-optimized research code and thus heav-
ily redundant, but we believe that some measurements
of the speed will be nevertheless interesting for practi-
cal considerations. To measure the times required for a
single update, we have therefore calculated the time re-
quired for a single update, averaged over the last twenty
updates in the experiments. We see that the AM allowed
the fastest updates. The oKDE was faster than the batch
methods in all cases except for the dataset Iris and Wine,
where the Hall’s method was slightly faster. Averaged
over the datasets, the oKDE required 0.07 seconds for
updating a distribution by a new observation.

6.3. Online estimation of classifiers

To analyze the discriminative properties of the oKDE,
we have repeated the experiment from the previous sec-
tion with the online and batch methods to construct clas-
sifiers from the publicly-available datasets described in

10

Table 3: The average negative log likelihood−L, BIC and the number of components in the models. For each dataset, the two best-performing
methods are in bold and the asterisk ()∗ sign denotes that the difference between the best and second best method is statistically significant.

dataset oKDE0.1 AM CV RSDE Hall
−L

Iris 8.4± 3.7 2.4± 0.4 2.7± 0.9 2.5± 0.9 2.0± 0.7
Pima 30.1± 0.3 30.1± 0.5 29.5± 0.5 38.4± 11.3 29.1± 0.1∗

Wine 23.8± 3.9 12.3± 0.8 11.6± 1.5 12.3± 1.9 9.6± 0.4∗

WRed −24.2± 1.1 −27.4± 0.2 −27.2± 1.0 −12.3± 4.3 −27.4± 0.7
WWhit 13.3± 0.3 14.5± 0.4 11.6± 0.4∗ 91.3± 44.6 11.9± 0.1
Letter 8.4± 0.1 11.4± 4.7 6.4± 0.3∗ 142.2± 13.0 10.2± 0.1
BCW 27.5± 6.9 97.9± 23.1 8.9± 3.1∗ 18.1± 5.4 11.1± 2.2
Seg −16.6± 1.8 −12.1± 3.8 −25.3± 2.3∗ 46.9± 35.9 −23.0± 1.7
Plates −3.5± 2.0 44.9± 11.6 −11.2± 1.5∗ 54.1± 18.9 −9.5± 0.8
Yeast 11.2± 1.1 3.9± 1.6 3.0± 2.1 62.8± 30.7 6.0± 0.5

BIC
Iris 5595± 37 4377± 70 8183± 72 1766± 58∗ 8242± 49
Pima 57280± 250∗ 138444± 224 194657± 144 65092± 13944 196005± 44
Wine 28395± 46 25854± 167 30582± 72 21225± 299∗ 31255± 87
WRed 53195± 466 −23710± 199∗ 579462± 341 74706± 9205 586600± 309
WWhit 260724± 769∗ 1560692± 1327 2391884± 654 817970± 312008 2417345± 531
Letter 2353134± 1849∗ 14228704± 41592 22016590± 7341 5130425± 387481 22240178± 994
BCW 615967± 770∗ 1267175± 6253 1269862± 1611 814150± 2477 1287566± 862
Seg 331204± 1150 1776111± 7393 2341933± 3878 342581± 104979 2357185± 1208
Plates 1069658± 3291 4239189± 13418 4216830± 11345 600487± 156551∗ 4247392± 1533
Yeast 101473± 290∗ 194856± 3530 348154± 4585 156825± 16827 357542± 996

Number of components per model
Iris 27± 4 16± 3 38± 0 11± 8 38± 0
Pima 42± 8 165± 47 288± 89 48± 27 288± 89
Wine 43± 6 32± 6 44± 7 37± 10 44± 7
WRed 42± 24 13± 4 200± 215 31± 32 200± 215
WWhit 37± 26 343± 365 525± 596 41± 40 525± 596
Letter 60± 10 321± 120 577± 17 24± 22 577± 17
BCW 102± 9 214± 56 214± 56 186± 57 214± 56
Seg 43± 10 181± 24 248± 0 23± 10 248± 0
Plates 60± 17 206± 155 208± 156 23± 16 208± 156
Yeast 29± 13 53± 51 111± 124 42± 61 111± 124

Table 2. For the baseline classification, we have applied
a multiclass SVM with an RBF kernel [34]. The clas-
sification performance of the KDE-based methods and
the AM was tested using a simple Bayesian criterion

ŷ = arg max
l

p(x|cl)p(cl). (36)

The parameter for the SVM kernel was determined sep-
arately in each experiment via cross validation on the
training data set.

The results are shown in Table 4. We can see that
the oKDE achieved a better classification than the AM
for all data-sets except for the Iris, for which the per-
formance was matched. In additional analysis we have
verified that in all datasets except for the Iris, the im-
proved performance was also statistically significant.
The batch methods, SVM, CV and Hall produced on

average best classification. The oKDE outperformed
batch RSDE, and produced a comparable classification
to the SVM, CV and Hall’s KDE. An important ob-
servation is that the oKDE produced comparable per-
formance to the batch methods, eventhough the oKDE
was constructed by observing only a single sample at a
time. In contrast, the SVM and the batch KDEs opti-
mized their structure by having access to all the sam-
ples. Note also that the oKDE’s classification perfor-
mance was comparable to SVM, eventhough the oKDE
is in its nature reconstructive, while the SVM optimizes
its structure to maximize discrimination. Note also, that
the complexity of the models learnt by batch KDEs is
generally larger than that of the oKDE. For example, for
theletter dataset, the oKDE required one ninth as many
components to achieve a comparable performance to the

11

Iris

Pima

Wine

WRed

WWhit

Letter

BCW

Seg

Plates

Yeast

10
-2

10
-1

10
0

10
1

average time [s]

0 200 400

storage

0 200 400

complexity

oKDE0.1AMCVRSDEHall

Figure 6: The estimated time required for a single-class update from
a single sample, the average storage requirement and the model’s av-
erage complexity.

CV and Hall’s KDE. While, compared to the oKDE, the
RSDE retained only half as many components for the
letter dataset, the RSDE’s classification performance
was also significantly lower.

6.4. Influence of the compression parameter Dth and
data order

The only free parameter in the oKDE is the com-
pression parameterDth, which quantifies the local ap-
proximation error during compression (and revitaliza-
tion) in terms of the unscented Hellinger distance. The
aim of this experiment was therefore to illustrate how
the different values of this parameter affect the oKDE’s
performance. The experiments involved approximating
a spiral-shaped two-dimensional stationary distribution
defined as

x = [(1 + θ) cos(θ), (1+ θ) sin(θ)]T + w (37)

w ∼ φΣw(·) ; θ ∼ U(0, 10)

whereΣw = diag{0.92, 0.92} andU(0, 10) is a uniform
distribution on interval [0, 10]. A set of 1000 sam-
ples was generated from this distribution – the first ten
samples were used for initialization and the rest were
used one at a time to update the oKDE. After all 1000
samples have been observed, the reconstructive perfor-
mance of the KDE model was evaluated as the average
negative log-likelihood of additionally drawn 20,000
samples.

The performance of the oKDE with various compres-
sion values was compared with the AM. The perfor-
mance results are shown under the ”random order” label
in Table 5. We see that the oKDE with the smallest com-
pression threshold produced the most accurate models
with 37 components. By increasing the compression

threshold, the number of components decreased, while
the approximation error increased. The oKDE outper-
formed the AM in accuracy forDth values smaller than
0.03. Note that the AM-estimated models contained on
average 45 components, while for example, the oKDE
with Dth = 0.02 produced more accurate models which
contained on average 20 components. We show typical
estimated models for AM and oKDE in the first row of
Figure 7.

AM

ra
n

d
o

m
 o

rd
e

r
so

rt
e

d
 o

u
tw

a
rd

so
rt

e
d

 in
w

a
rd

oKDE0.01 oKDE0.05

Figure 7: Mixture models of the spiral distribution for different or-
derings of data: random (first row), sorted outward (second row) and
sorted inward (third row). Each model is shown as a decomposed
mixture model, and as an image of its distribution.

6.4.1. Sorted data
To analyze the performance of the oKDE w.r.t. the

different data orderings, we have performed two vari-
ants of the previous experiment in which we enforced
a predefined order to the observed samples. The order
was enforced by deterministically selecting the values
of the position parameterθ in (37) along the spiral at
equal distances from the interval [0, 10].

In the first variant, the position valuesθ were orga-
nized in an ascending order, thus yielding anoutward
ordering of data-points from the spiral’s center, while
the second variation used a descending order of posi-
tion values, which yielded aninward ordering. In both
orderings, the early samples indicated a small scale of
the estimated distribution, and the entire scale became
evident slowly at later time-steps. In the outward order-
ing the scale became apparent only slowly, since a large
number of samples are concentrated at the center of the
spiral. The results for the outward and inward ordering
are given in the second and third columns of Table 5.
With increasingDth the oKDE produced models with
lower number of components at a cost of larger recon-
struction error. With respect to the values ofDth, the
number of components remained comparable with the
random sampling. On the other hand, the AM produced

12

Table 4: Average classification results along with± one standard deviation. With each classification performance we also show the model’s
complexity in parentheses. For each dataset, the two best methods are in bold and the asterisk ()∗ sign denotes that the difference between the best
and second best method is statistically significant.

dataset oKDE0.1 AM CV RSDE Hall SVM
Iris 97± 3(27± 4) 97± 3(16± 3) 96± 3(38± 0) 96± 2(11± 8) 97± 3(38± 0) 96± 4(16± 6)
Pima 72± 2(42± 8) 69± 3(165± 47) 72± 2(288± 89) 65± 3(48± 27) 74± 2(288± 89) 78± 3(163± 4)∗

Wine 94± 3(43± 6) 91± 4(32± 6) 92± 6(44± 7) 91± 5(37± 10) 96± 3(44± 7) 96± 3(24± 8)
WRed 64± 2(42± 24) 57± 3(13± 4) 64± 1(200± 215) 44± 4(31± 32) 66± 2(200± 215)∗ 63± 3(173± 179)
WWhit 55± 1(37± 26) 53± 2(343± 365) 62± 1(525± 596) 25± 6(41± 40) 62± 2(525± 596) 60± 2(473± 523)
Letter 96± 0(60± 10) 91± 3(321± 120) 96± 0(577± 17) 53± 2(24± 22) 95± 0(577± 17) 96± 0(311± 60)∗

BCW 93± 2(102± 9) 90± 3(214± 56) 96± 2(214± 56) 94± 2(186± 57) 91± 2(214± 56) 97± 2(52± 7)∗

Seg 93± 1(43± 10) 90± 2(181± 24) 94± 1(248± 0) 79± 3(23± 10) 94± 1(248± 0) 94± 1(83± 48)
Plates 72± 2(60± 17) 68± 2(206± 155) 71± 2(208± 156) 56± 4(23± 16) 65± 1(208± 156) 76± 2(146± 137)∗

Yeast 51± 2(29± 13) 48± 5(53± 51) 49± 4(111± 124) 35± 10(42± 61) 25± 2(111± 124) 60± 1(91± 105)∗

Table 5: The average negative log-likelihood (−L) and the number of components in the model (Ncmp) for oKDEDth and AM w.r.t. to the three data
orders: random, center-to-outermost and outermost-to-center, and averaged over the different orders

[mean± standard deviation]
random order sorted outward sorted inward averaged

method −L Ncmp −L Ncmp −L Ncmp −L Ncmp

AM 5.45± 0.04 43.3± 7.25 5.46± 0.01 216± 12.5 5.41± 0.01 115± 6.3 5.44± 0.04 125± 71.6
oKDE0.01 5.39±0.01 37.7± 3.22 5.39±0.01 48.9± 2.6 5.39±0.01 36.8± 2.8 5.39±0.01 41.1±6.2
oKDE0.02 5.39± 0.01 19.6± 1.43 5.39± 0.01 20.3± 2.48 5.41± 0.01 17.8± 1.38 5.4±0.01 19.2±2.1
oKDE0.04 5.48± 0.03 11.8± 1.44 5.63± 0.09 8.97± 1.5 5.76± 0.06 7.5± 1.5 5.63±0.13 9.43±2.3
oKDE0.05 5.55± 0.06 10± 1.76 5.83± 0.07 5.03± 1.4 5.84± 0.04 5.2± 1.03 5.74±0.15 6.74±2.71

models whose complexity was significantly larger. This
can be attributed directly to the missing scale informa-
tion in the early samples, which initially caused alloca-
tion of a larger number of components in the AM model.

With increasing the compression thresholdDth, the
degradation of the models in oKDE was faster for in-
ward than outward ordering. The reason is that greater
Dth allows grater loss of information about the struc-
ture of the distribution during online estimation. In the
absence of the structure information the models deterio-
rate. To estimate how the oKDE performs regardless of
the data order, the results over different orders were av-
eraged and are shown in the last column of Table 5. We
see that on average the oKDE withDth < 0.03 outper-
forms the AM by producing models with smaller errors
and smaller number of components. With increasing the
compression values, the number of components further
decreases, while the errors increase.

6.5. Influence of the revitalization scheme

To analyze the benefit of the revitalization scheme
from Section 4.3, we generated 1000 samples from a
heavily skewed one-dimensional reference distribution
(see, Figure 4a), and used one sample at a time with the
oKDE to approximate this distribution. One experiment
was performed with the revitalization scheme and one
without it. We have calculated the improvement fac-
torsγi w.r.t. the number of samples asγi = (ε̂i − εi)/ε̂i ,

whereε̂i is the L1 distance between the reference dis-
tribution and the model without revitalization,εi is the
L1 distance between the reference distribution and the
model with revitalization. The indexi represents the ob-
served sample. Figure 8 (right column) shows these re-
sults for the different values of the compression thresh-
old Dth. We can see that the improvement of using the
revitalization scheme increases with the number of sam-
ples regardless of the compression thresholdDth. For
example, after observing 1000 samples, the improve-
ment for all tested valuesDth was between 45% and
65%.

0 200 400 600 800 1000
0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000
-0.2

0

0.2

0.4

0.6

0.8

L1 γi

Figure 8: The left plot shows theL1 distance errors for theoKDE
with the revitalization scheme (dark blue), and without therevitaliza-
tion scheme (bright cyan), w.r.t. the number of samplesNsamp. The
right graph shows the improvements in terms of error reduction (im-
provement factorγi). The results foroKDE0.01, oKDE0.02, oKDE0.04
andoKDE0.05 are depicted by solid, dashed, dash-dotted and dotted
lines, respectively.

13

7. Conclusion

We have proposed an approach for a kernel den-
sity estimation which can be applied in online opera-
tion. The central point of the proposed scheme is that
it does not store all the observed samples, but main-
tains only their compressed model and uses this model
to compute the kernel density estimate of the underly-
ing distribution. During online operation, the low com-
plexity is automatically maintained by a new compres-
sion/revitalization scheme. The approach was analyzed
using examples of online estimation of stationary as
well as non-stationary distributions and on classification
examples. In all experiments, the oKDE was able to
produce comparable or better results to the state-of-the-
art online and batch approaches, while producing mod-
els whose complexity was significantly lower.

The only parameter in the oKDE is the compres-
sion threshold that specifies the allowed loss of recon-
structive properties during compression. Experiments
showed that a low value ofDth produces models with
larger number of components and influences the recon-
struction properties of the estimated model. If the task at
hand involves estimation of probability density function
for reconstruction, or compression of the input stream,
then choosing a low value may be advantageous. On
the other hand, larger values imply greater smoothing
and therefore regularization of the distribution. Note
that for the classification tasks, loss of reconstructive
information does not necessarily mean loss of discrim-
inative properties. In fact, we have observed in the ex-
periments, that choosing a valueDth = 0.1, yielded a
very good recognition performance at a small number
of components. At the same time, the models retained
enough reconstructive information to sufficiently adapt
to the new data. For online construction of classifiers
we therefore propose settingDth = 0.1. Alternatively,
the thresholdDth might be adapted during the online
operation of the model. For example, one could keep in
memory a small set of past observed values and validate
the estimated model at a few compression thresholds, to
select the best performing threshold.

Due to the nature of the compression algorithm, dif-
ferent components in the oKDE have different covari-
ances and thus the result is equivalent to a KDE with
a non-stationary bandwith. Nevertheless, related re-
search [14, 15, 17] shows that further adjusting the non-
stationary bandwidths by taking into account the lo-
cal structure of data (e.g., nearest neighbors) can sig-
nificantly improve the density estimation. The rea-
son is that the regions of feature space with few sam-
ples require more intensive smoothing than the more

densely populated regions. Another reason is that the
data within a neighborhood of a component better de-
termine the local structure (the local manifolds) of the
density function. We believe that applying the method-
ology from [15, 17] to oKDE would be beneficial and it
is likely to improve the performance in density estima-
tion.

Note that the update procedure in the oKDE makes
it a reconstructive estimator, since the compression al-
gorithm penalizes errors in the reconstruction. We can
think about the compression algorithm itself as an ap-
proximate optimization, which seeks a minimum of the
reconstructive cost function. We believe that replac-
ing this cost function with some other criterion would
yield different properties of the online KDE, without
modification of the optimization algorithm. Indeed, we
have already explored a possibility of replacing this cost
function with a criterion that, instead of reconstruction
errors, it penalizes discriminative errors in [35] and ob-
tained encouraging preliminary results. We believe that
this venue of research will lead to online probabilistic
discriminative models based on the kernel density es-
timation, which will be based on the theory presented
here. These are the topics of our ongoing research.

Appendix A. The unscented Hellinger distance

The unscented transform is a special case of a Gaus-
sian quadrature, which, similarly to Monte Carlo in-
tegration, relies on evaluating integrals using carefully
placed points, calledthe sigma points, over the sup-
port of the integral. Therefore, as in Monte Carlo
integration [36], we define animportancedistribution
p0(x) = γ(p1(x) + p2(x)), which contains the support
of both, p1(x) as well asp2(x), with γ set such that
∫

p0(x)dx = 1. In our case,p0(x) is a Gaussian mix-
ture model of a form
p0(x) =

∑N
i=1 wiφΣi (x − xi), and we rewrite the Hellinger

distance (22) into

D2(p1, p2) =
1
2

∫

g(x)p0(x)dx

=
1
2

N
∑

i=1

wi

∫

g(x)φΣi (x − xi)dx,(A.1)

where we have definedg(x) =
(
√

p1(x)−
√

p2(x))2

p0(x) . Note
that the integrals in (A.1) are simply expectations over
a nonlinearly transformed Gaussian random variableX,
and therefore admit to the unscented transform. Accord-

14

ing to [31] we then have

D2(p1, p2) ≈ 1
2

N
∑

i=1

wi

2d+1
∑

j=0

g((j)Xi)(j)Wi , (A.2)

where {(j)Xi ,
(j)Wi} j=0:d are weighted sets of sigma

points corresponding to thei-th GaussianφΣi (x − xi),
and are defined as

(0)Xi = xi ; (0)Wi =
κ

1+ κ
(j)Xi = xi + sj

√
1+ κ(

√

dΣi) j

(j)Wi =
κ

2(1+ κ)
; sj =

{

1 ; j ≤ d
−1 ; otherwise

(A.3)

with κ = max([0,m− d]), and (
√
Σi) j is the j-th column

of the matrix square root ofΣi . Concretely, letUDUT

be a singular value decomposition of covariance matrix
Σ, such thatU = {U1, . . . ,Ud} andD = diag{λ1, . . . , λd},
then (

√
Σ)k =

√
λkUk. In line with the discussion on the

properties of the unscented transform in [31], we set the
parameterm to m= 3.

Acknowledgment

This research has been supported in part by: RP
P2-0214 and P2-0094 (RS), ARRS project ”Learning
a large number of visual object categories for content-
based retrieval in image and video databases”, and EU
FP7-ICT215181-IP project CogX..

References

[1] G. McLachlan, D. Peel, Finite mixture models, Wiley-
Interscience, 2000.

[2] Z. Živkovič, F. van der Heijden, Recursive unsupervised learn-
ing of finite mixture models, IEEE Trans. Pattern Anal. Mach.
Intell. 26 (5) (2004) 651 – 656.

[3] M. A. F. Figueiredo, A. K. Jain, Unsupervised learning offinite
mixture models, IEEE Trans. Pattern Anal. Mach. Intell. 24 (3)
(2002) 381–396.

[4] E. Parzen, On estimation of a probability density function and
mode, Annals of Math. Statistics 33 (1962) 1065–1076.

[5] F. Hoti, L. Holmström, A semiparametric density estimation ap-
proach to pattern classification, Patt. Recogn. 37 (3) (2004) 409–
419.

[6] G. Fu, F. Shih, H. Wang, A kernel-based parametric method
for conditional density estimation, Patt. Recogn. 44 (2011) 284–
294.

[7] B. W. Silverman, Density Estimation, London: Chapman and
Hall, 1986.

[8] P. Hall, S. J. Sheater, M. C. Jones, J. S. Marron, On optimal
data-based bandwidth selection in kernel density estimation,
Biometrika 78 (2) (1991) 263–269.

[9] Y. Hamamoto, Y. Fujimoto, S. Tomita, On the estimation ofa
covariance matrix in designing Parzen classifiers, Patt. Recogn.
29 (1996) 1751–1759.

[10] D. Chaudhuri, B. Chaudhuri, C. Murthy, A data driven pro-
cedure for density estimation with some applications, Patt.
Recogn. 29 (10) (1996) 1719–1736.

[11] M. P. Wand, M. C. Jones, Kernel Smoothing, Chapman &
Hall/CRC, 1995.

[12] J. M. L. Murillo, A. A. Rodriguez, Algorithms for gaussian
bandwidth selection in kernel density estimators, in: Neural Inf.
Proc. Systems, 2008.

[13] Y. Li, D. de Ridder, R. Duin, M. Reinders, Integration ofprior
knowledge of measurement noise in kernel density classifica-
tion, Patt. Recogn. 41 (1) (2008) 320–330.

[14] J. Cwik, J. Koronacki, A combined adaptive-mixtures/plug-in
estimator of multivariate probability densities, Computational
Statistics and Data Analysis 26 (1998) 199218.

[15] P. Vincent, Y. Bengio, Manifold parzen windows, in: Advances
in Neural Information Processing Systems, 2003, pp. 849–856.

[16] J. Goldberger, S. Roweis, Hierarchical clustering of amixture
model, in: Neural Inf. Proc. Systems, 2005, pp. 505–512.

[17] E. López-Rubio, J. Ortiz-de Lazcano-Lobato, Soft clustering for
nonparametric probability density function estimation, Pattern
Recognition Letters 29 (16) (2008) 2085–2091.

[18] M. Girolami, C. He, Probability density estimation from op-
timally condensed data samples., IEEE Trans. Pattern Anal.
Mach. Intell. 25 (10) (2003) 1253–1264.

[19] Z. Deng, F. Chung, S. Wang, FRSDE: Fast reduced set den-
sity estimator using minimal enclosing ball approximation, Patt.
Recogn. 41 (2008) 1363–1372.

[20] A. Leonardis, H. Bischof, An efficient mdl-based construction
of rbf networks, Neural Networks 11 (5) (1998) 963 – 973.

[21] O. Arandjelovic, R. Cipolla, Incremental learning of temporally-
coherent gaussian mixture models, in: British Machine Vision
Conference, 2005, pp. 759–768.

[22] C. E. Priebe, D. J. Marchette, Adaptive mixture densityestima-
tion, Patt. Recogn. 26 (1993) 771–785.

[23] K. Tabata, M. Sato, M. Kudo, Data compression by volume pro-
totypes for streaming data, Patt. Recogn. 43 (2010) 3162–3176.

[24] M. Song, H. Wang, Highly efficient incremental estimation of
Gaussian mixture models for online data stream clustering,in:
SPIE, 2005, pp. 174–183.

[25] A. Declercq, J. H. Piater, Online learning of gaussian mixture
models - a two-level approach, in: VISAPP, 2008, pp. 605–611.

[26] B. Han, D. Comaniciu, Y. Zhu, L. S. Davis, Sequential ker-
nel density approximation and its application to real-timevisual
tracking, IEEE Trans. Pattern Anal. Mach. Intell. 30 (7) (2008)
1186–1197.

[27] T. Duong, M. L. Hazelton, Plug-in bandwidth matrices for
bivariate kernel density estimation, Nonparametric Statistics
15 (1) (2003) 1730.

[28] M. Kristan, D. Skočaj, A. Leonardis, Online kernel density es-
timation for interactive learning, Image and Vision Computing
28 (7) (2010) 1106–1116.

[29] Y. Bar-Shalom, X. R. Li, T. Kirubarajan, Estimation with Ap-
plications to Tracking and Navigation, John Wiley & Sons, Inc.,
2001, Ch. 11, pp. 438–440.

[30] D. E. Pollard, A user’s guide to measure theoretic probability,
Cambridge University Press, 2002.

[31] S. Julier, J. Uhlmann, A general method for approximating
nonlinear transformations of probability distributions,Tech.
rep., Department of Engineering Science, University of Oxford
(1996).

[32] A. T. Ihler, Inference in sensor networks: Graphical models and
particle methods, Ph.D. thesis, Massachusetts Institute of Tech-
nology (2005).

[33] A. Asuncion, D. Newman, UCI machine learning repository
(2007).

15

[34] C. C. Chang, C. J. Lin, LIBSVM: A library for support vector
machines (2001).

[35] M. Kristan, A. Leonardis, Online discriminative kernel density
estimation, in: International Conference on Pattern Recognition,
2010, pp. 581–584.

[36] E. Veach, L. J. a. Guibas, Optimally combining samplingtech-
niques for monte carlo rendering, in: Comp. graph. interactive
techniques, 1995, pp. 419 – 428.

16

	Introduction
	Our approach

	The model definition
	Estimation of the bandwidth
	Compression of the sample model
	The local clustering error
	Compression by hierarchical error minimization
	Revitalizing the sample distribution

	Online Kernel Density Estimation
	Experimental study
	Density estimation on artificial data-sets
	Density estimation on real data-sets
	Online estimation of classifiers
	Influence of the compression parameter Dth and data order
	Sorted data

	Influence of the revitalization scheme

	Conclusion
	The unscented Hellinger distance

