An integrated system for interactive continuous learning of categorical knowledge
2016
This article presents an integrated robot system capable of interactive learning in dialogue
with a human. Such a system needs to have several competencies and must be able to process
dierent types of representations. In this article we describe a collection of mechanisms that
enable integration of heterogeneous competencies in a principled way. Central to our design
is the creation of beliefs from visual and linguistic information, and the use of these beliefs
for planning system behaviour to satisfy internal drives. The system is able to detect gaps in
its knowledge and to plan and execute actions that provide information needed to ll these
gaps. We propose a hierarchy of mechanisms which are capable of engaging in dierent kinds
of learning interactions, e.g. those initiated by a tutor or by the system itself. We present the
theory these mechanisms are build upon and an instantiation of this theory in the form of an
integrated robot system. We demonstrate the operation of the system in the case of learning
conceptual models of objects and their visual properties.