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Abstract— This paper addresses the problem of learning
about the interactions of rigid bodies. A probabilistic frame-
work is presented for predicting the motion of one rigid body
following contact with another. We describe an algorithm for
learning these predictions from observations, which does not
make use of physics and is not restricted to domains with
particular physics. We demonstrate the method in a scenario
where a robot arm applies pushes to objects. The probabilistic
nature of the algorithm enables it to generalize from learned
examples, to successfully predict the resulting object motion for
previously unseen object poses, push directions and new objects
with novel shape. We evaluate the method with empirical
experiments in a physics simulator.

I. INTRODUCTION

In early childhood, humans and animals learn models for
predicting the interactions with the environment [1]. It seems
unlikely that these models comprise an explicit encoding of
Newtonian physics, and so must instead rely on a learned
relationship between observed actions and their outcomes.

This paper addresses the problem of learning to predict the
motion of one body, which results from a forced interaction
with another. We have chosen to investigate this problem in
the context of robotic “poking” or “pushing” operations, be-
cause this includes a large number of unstable manipulations
and hence provides interesting situations. However the work
is potentially more general.

An algorithm is presented which learns to predict the
motions of a rigid object that will result from an applied
robotic pushing action. The algorithm does not rely on any
understanding or encoding of Newtonian mechanics, but can
be trained in simple online experiments in which a robot
arm applies random pushes to objects of interest and extracts
the resulting motions using a vision system. Properties of
objects, and their interactions, are learned as distributions.

Pushing operations are encountered frequently in robotics,
but have received relatively little attention in the research
community. They are important in that robotic grasping
frequently involves a pushing phase, when one finger or
jaw of a gripper contacts the workpiece before another.
Furthermore, pushing may often be preferable to pick and
place type operations if the robot lacks the size or strength
necessary to lift an object.

[2] was the first to identify pushing operations as funda-
mental to manipulation, especially grasping. Mason develops
a detailed analysis of the mechanics of pushed, sliding
objects and determines conditions required for various 2D

motions of a pushed object. [3] attempts to put quantitative
bounds on the rate at which these predicted motions occur.
[4] developed a method for finding the set of all possible
motions of a sliding object, in response to an applied push.
More recently, [5] has developed path planning techniques
for push manipulation of 2D sliding objects, based on the
use of a physics simulator for prediction.

The above work is restricted to planar sliding motions of
effectively 2D objects. In contrast, there is comparatively
little literature which addresses the far more complex prob-
lems of predicting the results of push manipulations on real
3D bodies, which are free to tip or roll. It is possible to
use physics simulators to predict the motions of interacting
rigid bodies, however this approach is reliant on explicit
knowledge of the objects, the environment and key physical
parameters. It is therefore not generalizable to new objects
or novel situations.

Machine learning approaches have been developed to learn
pre-specified binary affordance classes, e.g. rolling versus
non-rolling objects [6], or liftable versus non-liftable objects
[7]. [8] present experiments where a robot arm coupled to
a vision system learns affordances (e.g. rolling or sliding)
of various different objects by applying pushes and then
observing the resulting motions. This kind of approach is
limited, in that affordances learned for a specific object and
push action, may not be generalizable to a new object, pose
or push direction. Furthermore, although certain primitive
classes of motion, e.g. “rolling”, may be predicted, such
systems cannot predict an explicit 6-DOF rigid body motion
for the pushed object.

In contrast, we present a system which can learn to predict
the explicit 3D rigid body transformations that will result
when an object in an arbitrary orientation is subjected to
an arbitrary push. The probabilistic nature of the learning
enables generalization to previously unseen push directions
and object poses. Furthermore, the system is often able
to successfully predict the behaviors of novel objects with
previously unencountered shapes.

II. REPRESENTING THE INTERACTION OF RIGID BODIES

Consider three reference frames A, B and O in a 3-
dimensional Cartesian space (see Figure 1). While frame O
is fixed, A and B change in time and are observed at discrete
time steps ..., t−1, t, t+1, ... every non-zero ∆t. A frame X



Fig. 1. A system consisting of two interacting bodies with frames A and B
in some constant environment with frame O can be described by six rigid
body transformations T At,Bt , T Bt,O , T At−1,At , T At,At+1 , T Bt−1,Bt ,
and T Bt,Bt+1 .

at time step t is denoted by Xt, a rigid body transformation
between a frame X and a frame Y is denoted by TX,Y .

From classical mechanics we know that in order to predict
a state of a body, it is sufficient to know its mass, velocity
and a net force applied to the body. We do not assume
any knowledge of the mass and applied forces, however the
transformations of a body, with attached frame B, over two
time steps TBt−1,Bt and TBt,Bt+1 encode its acceleration
- the effect of the applied net force. Therefore, if the net
force and the body mass are constant, the transformations
TBt−1,Bt and TBt,Bt+1 provide a complete description of
the state of a body at time step t in absence of other bodies.
A triple of transformations TBt,O, TBt−1,Bt and TBt,Bt+1

provide a complete description of a state of a body in some
fixed frame of reference O which accounts for a constant
or stationary environment. Similarly, transformations TAt,O,
TAt−1,At and TAt,At+1 provide such a description for some
other body with frame A.

The state of a system consisting of two bodies with frames
A and B in some constant environment with frame O can
be described by the six transformations as it is shown in
Figure 1, where TAt,O has been replaced by a relative
transformation TAt,Bt . The transformation TBt,O can be
omitted, if the environment does not affect the motion of
the bodies or it is explicitly modeled by one of them.

The prediction problem can now be stated as: given we
know or observe the starting states and the motion of the
pusher, TAt,At+1 , predict the resulting motion of the object,
TBt,Bt+1 . This is a problem of finding a function:

f : TAt,Bt , TBt,O, TAt−1,At , TBt−1,Bt , TAt,At+1 → TBt,Bt+1

(1)
Function 1 is capable of encoding all possible effects of

interactions between rigid bodies A and B, providing their
physical properties and applied net forces are constant in
time. Furthermore, it can be learned purely from observations
for some fixed time delta ∆t. There are two important
problems related to relying on such a function:

1) Limited or no generalization capability. A function
approximating interactions between bodies A and B

cannot be used for any other bodies of e.g. different
shape or mass. This is because function 1 implicitly
encodes information about the surfaces of A and
B, which play a critical role in collisions. In this
way a slight change of the objects’ shape can cause
a dramatic deviation of the predicted transformation
TBt,Bt+1 .

2) Dimensionality problem. For a rigid body transfor-
mation represented as a set of 6 or 7 numbers, the
domain of function 1 has 30 or 35 dimensions.

III. COMBINING LOCAL AND GLOBAL INFORMATION

It is clear that we need to enable generalization of pre-
dictions with respect to changes in shape. We also assume
quasi-static conditions, i.e. we ignored all frames at time
t− 1. Consider two objects lying on a table top. In Figure 2
there are two situations that are identical except for the shape
of the object A, yet it is clear that the same transformation of
A’s position will lead to quite a different motion for object B.
How can we encode the way that the shapes of A and B alter
the way they behave? We use a product of several densities to
approximate the density over the rigid body transformation
given in the function 1.
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Fig. 2. Two scenes, each with two objects on a table top, viewed from
above. Between the two scenes only the shape of A is different. Yet when A
moves the resulting transformation T Bt,Bt+1 will be quite different. This
shows that our predictors must take some aspect of the shape of A and B
into account.

To do this we approximate two densities, conditioned
on local and global information respectively. We define the
global information to be the information about the pose, but
not the shape, of the whole object. We define the local shape
we consider here to be the pose of the surfaces of A and B at
the contact point, or the point of closest proximity, between
the object and the finger. We model this local shape as a pair
of planar surface patches, of limited extent (see Figure 3).
Statistically, the greater the starting distance between these
local surface patches of A and B, and/or the smaller the
magnitude of the transformation TAt,At+1 , the less likely
it is that the objects will collide, and hence the less likely
it is that the pose of shape B will change between t and
t+ 1, or equivalently the more likely that the transformation
TBt,Bt+1 will be an identity transformation Id. On the other
hand, if the local surfaces A and B are close a large portion
of possible transformations TAt,At+1 will cause collisions.

Transformations TAt,Bt , TAt,At+1 and TBt,Bt+1 , ob-
served over many experimental trials for many different
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Fig. 3. Two scenes, each with two objects on a table top, viewed from
above. Local shapes A and B, transformations T At,At+1 and T At,Bt are
the same in each scene. Still, the transformation T Bt,Bt+1 is different
because local shapes belong to different parts of objects.

objects form a distribution. A particularly useful distribution
is a conditional distribution:

{TBt,Bt+1 |TAt,At+1 , TAt,Bt} (2)

While conditional distribution 2 for global frames may
become unimodal, for local shapes is highly multi-modal.
To see this consider two scenes with two objects, where the
initial conditions are identical (Figure 3). Local shapes A
and B, transformations TAt,At+1 and TAt,Bt are the same
in each scene. Still, the transformation TBt,Bt+1 is different
because local shapes belong to different parts of objects.

Fig. 4. 2D projection at time t of a robotic finger with global frame At,
an object with global frame Bt, and a ground plane with constant global
frame O. Local frames Ap

t and Bp
t describe the local shape of the finger

and an object at their point of closest proximity.

Consider a 2D projection at time t of a robotic finger
with global frame At, an object with global frame Bt, and
a ground plane with constant global frame O (Figure 4).
Similarly, local frames Ap

t and Bp
t describe local shapes

belonging to a finger and an object. The global conditional
density function can be defined as:

p(TBt,Bt+1 |TAt,At+1 , TAt,Bt , TBt,O) (3)

and similarly a local conditional density function as:

pc(TBp
t ,Bp

t+1 |TAp
t ,Ap

t+1 , TAp
t ,Bp

t ) (4)

Because both objects are rigid, TAt,At+1 ≡ TAp
t ,Ap

t+1 and
TBt,Bt+1 ≡ TBp

t ,Bp
t+1 . To predict the rigid body transfor-

mation of an object when it is in contact with others we
are faced with how to represent the constraints on motion
provided by the contacts. We do this using a product of
experts. The experts represent by density estimation which

rigid body transforms are (in)feasible for each frame of refer-
ence. In the product, only transformations which are feasible
in both frames will have high probability. For the finger-
object scenario a prediction problem can then be defined as
finding that TBt,Bt+1 which maximizes the product of the
two conditional densities (experts) 3 and 4:

max
T Bt,Bt+1

p(TBt,Bt+1 |TAt,At+1 , TAt,Bt , TBt,O)×

pc(TBt,Bt+1 |TAt,At+1 , TAp
t ,Bp

t ) (5)

The prediction problem cannot be solved using regression
approach. Two regression estimates could only be combined
linearly since they each make only a single prediction.
Without information about the density around each of these
predictions there is no ability to find compromise predic-
tions in a principled way. In principle it is possible to fit
unimodal densities using regression, but even this approach
will lead to failure if the conditional distribution is multi-
modal. In this case the conditional distributions are indeed
highly multi-modal. Another way of saying this is that since
the constraints are clearly highly non-linear the regression
approach will fail for even very simple situations.

Starting with some initial state of the finger TA0 and
the object TB0 , and knowing a trajectory of the finger
A1, . . . AN over T time steps, one can predict a whole
trajectory of an object B1, . . . BN by sequentially solving
a problem of maximization of the product 5.

There are two major advantages of using such products
of densities, e.g. over attempting to directly approximate the
function of equation 1:

1) Efficient movement encoding and learning. Combin-
ing information from both local and global frames, al-
lows objects’ properties to be separated into those that
are common to many objects and those that are specific
to the particular object in question. Common properties
(e.g. impenetrability) tend to be encoded in the local
surface patches distribution, function 4, whereas the
global density function 3 encodes information specific
to the workpiece, such as its overall shape. The global
density function 3 tends not to require many learning
trials to provide accurate predictions, when combined
with the local density function 4, which is shared or
common to many different objects or situations. Thus
this combination provides a movement encoding and
learning method which is highly efficient.

2) Generalization. Even small differences in a local
object surface can cause very different reactions
TBt,Bt+1 for some given action TAt,At+1 . However,
such changes are unlikely to be predicted by a global
density function alone. Hence, computing TBt,Bt+1 as
the maximizer of the product of densities, equation
5, enhances the ability of the system to generalise
between different objects and actions, because both
local and global densities must simultaneously support
the predicted motion hypothesis TBt,Bt+1 .



IV. LEARNING AS DENSITY ESTIMATION

We use memory-based learning in which all learning
samples are stored during learning. The learning samples
create a global joint distribution:

{TAt,Bt , TBt,O, TAt,At+1 , TBt,Bt+1} (6)

and local joint distribution:

{TAp
t ,Bp

t , TAt,At+1 , TBt,Bt+1} (7)

We address 3D rigid bodies, subject to 6-DOF transfor-
mations, so that distributions 6 and 7 have 4 × 6 = 24
and 3 × 6 = 18 dimensions respectively. During prediction
conditional densities 3 and 4 are created online from learning
sample sets (i.e. from distributions 6 and 7).

Consider N D-dimensional sample vectors Xi drawn from
some unknown distribution. We would like to find an approx-
imation of this distribution in the form of a density function
p(X). Kernel density methods with Gaussian kernels (see
e.g. [9]) estimates the density p(X) for any given vector
X as a sum of N identical multivariate Gaussian densities
centered on each sample vector Xi:

p(X) = Cnorm

∑
i=1...N

exp
[
−1

2
(X −Xi)T C−1(X −Xi)

]
(8)

where a constant Cnorm = [N(2π)D/2|C|1/2]−1 and C is a
D×D sample covariance matrix. For simplicity, we assume
that C is diagonal. The above equation can be re-written in
a new simpler form ([9]):

p(X) =
1
N

∑
i=1...N

 ∏
j=1...D

Khj
(Xj −Xj

i )

 (9)

where Khj
are 1-dimensional Gaussian kernel functions:

Khj
(Xj −Xj

i ) =
1

(2π)1/2hj
exp

[
Xj −Xj

i

hj

]
(10)

and D parameters hj are called bandwidth H ≡
(h1, . . . , hD). The bandwidth H is estimated from all dis-
tribution learning samples using the ”multivariate rule-of-
thumb”, see [9].

Let us decompose each D-dimensional sample vector Xi

into two vectors: K-dimensional Yi and L-dimensional Zi

so that Xi ≡ (Yi, Zi)T and D = K+L. Knowing bandwidth
H or equivalently diagonal covariance matrix C for sample
set {Xi} ≡ {(Yi, Zi)T }, we can compute conditional density
p(Z|Y ) for some given vectors Y and Z using the following
two step procedure:

1) Find a set of M weighted samples {(Zi, wi)} repre-
senting a conditional distribution for given vector Y ,
such that Yi which corresponds to Zi lies within some
predefined maximum Mahalanobis distance dmax to
vector Y . Mahalanobis distance di between sample
vector Yi and vector Y is defined as:

di = (Y − Yi)T C−1
Y (Y − Yi) (11)

where diagonal covariance CY is defined as:

C =
[

CY 0
0 CZ

]
(12)

Weights wi are computed from distance di as:

wi = exp[−di/2] (13)

and normalized for all M weights wi. Normalized
weight wi can be interpreted as a probability of gen-
erating Yi from a multivariate Gaussian centered at Y
with covariance CY .

2) Compute conditional probability density p(Z|Y ) as:

p(Z|Y ) =
∑

i=1...M

wi exp
[
−1

2
(Z − Zi)T C−1

Z (Z − Zi)
]

(14)
The density product 5 is maximized using the differential

evolution optimization algorithm [10]. This requires the abil-
ity to evaluate and sample from each distribution comprising
product 5.

All conditional distributions are represented as a weighted
set of samples {(Zi, wi)}. Computation of a probability
density for some given vector Z is realized as in Equation
14. Sampling consists of a two step procedure:

1) Choose vector Zi from a set of samples {(Zi, wi)} us-
ing an importance sampling algorithm with importance
weights wi ([11]).

2) Sample from a multivariate Gaussian centered at Zi

with covariance CZ .

V. RESULTS

We evaluated the prediction algorithm with experiments
in a physics simulator. Multiple experimental trials are per-
formed, in which a 5-DOF robotic arm equipped with a finger
performs a random movement of length approximately 25
cm towards an object at a random initial pose (Figure 5). In
each experiment, learning samples comprising distributions
6 and 7 are stored for a particular object over a series of such
random trials. Each experimental trial lasts 10 seconds, while
learning samples are stored every 0.1 seconds. Further, new
random trials are then generated and the learned distributions
are tasked with predicting the resulting motions. Although
random trials are independently generated for the learning
and prediction phases, the same level of variability in pose
and pushing action is used for each phase.

We take the output of a physics simulator to be ground-
truth, and compare this with predictions made by our sta-
tistical learning method according to an average prediction
error E defined as:

E =
1
K

∑
k=1...K

1
T

∑
t=1...T

1
N

∑
n=1...N

∣∣p1
n − p2

n

∣∣ (15)



Fig. 5. A 5-DOF robotic arm equipped with a finger performs forward
movements towards an object (top left). Object behavior varies depending
on the initial object pose and finger trajectory. Physics simulator predictions
are rendered as solid, while predictions obtained from our prediction
algorithm are rendered as wired. A majority of the algorithm predictions
are qualitatively plausible (top right and bottom left). Bottom right panel
shows a qualitative error.

where K is a number of experiment trials, T is a number
of discrete time steps in each trial (i.e. trial duration), N is a
number of pairs of 3D points {p1

n, p
2
n}, |·| denotes Euclidean

distance between points in a pair. Points p1
n are rigidly

attached to an object controlled by a physics simulator, while
points p2

n to an object controlled by the prediction algorithm.
All points are randomly generated at the beginning of each
trial so that for t = 1, p1

n = p2
n for all n.

Fig. 6. Average prediction error for a polyflap in a function of a number
of learning samples.

In the first experiment a robot pushes a simple symmetric
14cm × 14cm polyflap1 (Figure 5) placed randomly on a
ground plane in arbitrary stable poses.

Figure 6 shows the average prediction error as a function
of the number of samples collected during learning (the same
for local distribution 7 and global distribution 6). The error

1Polyflaps are objects consisting of a number of connected flat surfaces.
Their behavior can be very complex as compared to e.g. a simple box.

decreases as the number of learning samples increases and
predictions are reasonably good for just a few thousand learn-
ing samples. Even in cases where the prediction errors are
large, the majority of predictions are qualitatively plausible,
for example, correctly predicting whether a polyflap will
slide, tilt or topple (Figure 7).

Polyflap shape modification Prediction error [cm]
none (learnt shape) 0.76
narrowed by 50% 0.72
widened by 40% 1.3
skewed by 15 ˚ 1.16
skewed by 30 ˚ 1.26
skewed by 40 ˚ 1.35

TABLE I
PREDICTION ERROR IN POLYFLAP EXPERIMENTS.

Fig. 7. After the modification of the polyflap shape most of predictions are
still qualitatively correct. For example the algorithm predicts that a polyflap
tips instead of returning to its initial pose after tilting (left), furthermore it
makes no errors if some parts of the surface are removed (right).

In the second experiment we attempted to generalise to
novel objects, by using learning samples from the first
experiment to predict the trajectory of a new polyflap with a
previously unseen shape. We experimented with 5 types of
modified polyflap shapes which, together with corresponding
prediction error, are collected in Table I. Most predictions
are qualitatively correct (Figure 7), however there are more
coarse errors compared to the previous experiment.

Box shape modification Prediction error [cm]
none (learnt shape) 1.68
narrowed by 40% 1.72
widened by 30% 2.15
enlarged by 30% 2.75

TABLE II
PREDICTION ERROR IN BOX EXPERIMENTS.

In a third experiment, we learn on a box (16cm ×
5cm×12cm parallelepiped) instead of a polyflap, and try to
generalize to predict the motions of distorted boxes that are
differently shaped to the one used in learning. We considered
3 types of box modifications which are also compared to the
unmodified box shape in Table II. Note that the absolute
prediction error is larger than for the polyflap experiment,



Fig. 8. For a modified box shape version many predictions are correct (left)
while if the modified shape extends beyond the learnt one the predictor tends
to make more errors (right).

but this is mostly due to the larger box dimensions, and
more frequent rotational box movements (see Figure 8).

Prediction Learning samples Prediction error [cm]
polyflap box 2.38
box polyflap 3.13

TABLE III
PREDICTION ERROR FOR SWAPPED LEARNING SAMPLES.

Fig. 9. After swapping learning samples between a box and a polyflap,
the majority of predictions are still qualitatively plausible (left). However
there is a relatively larger percentage of coarse errors (right).

In the final experiment we attempted to generalise between
qualitatively different objects, using box learning samples to
predict a polyflap trajectory, and polyflap learning samples
to predict a box trajectory (Table III). Again, a majority of
predictions are still qualitatively plausible, however there is
a relatively larger percentage of coarse errors (Figure 9)

Although the results of these experiments are promising,
the algorithm displays errors which are especially visible
in the shape generalization experiments and where there
are motions involving large amounts of rotation. The major
sources of these errors are thought to be:

1) Density estimation algorithm. Uniform covariances,
used for all kernels, are not completelly adequate for
approximating local densities in so many dimensions.
Kernel density estimators are unable to handle rank-
deficient data [9], whereas such data is clearly present
in the introduced distributions.

2) Correlation problem. The density product 5 express
a correlation (functional relationship) between a finger

and an object. While they are correlated if they are in
contact, they are no longer strongly correlated when
they lose contact following a push. An example is
when a polyflap tips over after being pushed by the
finger.

VI. CONCLUSIONS

We have presented a statistical framework for learning to
predict the motions of interacting objects. By decomposing
the prediction task into a product of two distributions, each
encoding different kinds of information, we have demon-
strated a degree of generality in terms of handling variations
in shape, poses and actions. We have also shown that it is
possible to produce reasonable predictions for the behaviour
of a novel shape (e.g. a box), having learned on a quite
different one (e.g. a polyflap). This is despite the very small
number of densities we use to encode the spatial relationship
and shape of the two objects. We are now extending this
approach to a product of many densities to give an improved
representation of object shape. Future work will also look at
using this prediction system for path planning and control
during robotic pushing operations.
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