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This paper addresses the problem of selecting features in a visual object detection setup where a detec-
tion algorithm is applied to an input image represented by a set of features. The set of features to be
employed in the test stage is prepared in two training-stage steps. In the first step, a feature extraction
algorithm produces a (possibly large) initial set of features. In the second step, on which this paper
focuses, the initial set is reduced using a selection procedure. The proposed selection procedure is based
on a novel evaluation function that measures the utility of individual features for a certain detection task.
Owing to its design, the evaluation function can be seamlessly embedded into an AdaBoost selection
framework. The developed selection procedure is integrated with state-of-the-art feature extraction
and object detection methods. The presented system was tested on five challenging detection setups.
In three of them, a fairly high detection accuracy was effected by as few as six features selected out of
several hundred initial candidates.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Feature selection, a process that follows feature extraction in a
typical visual classification or detection setup, serves multiple pur-
poses simultaneously. Obviously, a smaller set of features implies
less computational effort in the test stage. A successful selection
method might also improve classification or detection accuracy
and enhance robustness.

Viola and Jones (2004) demonstrate that a powerful selection
method makes it possible to use a fairly simple feature extractor.
In their method, a vast number of features is extracted using four
elementary rules. Most of these features seem to be devoid of
any discriminative power. However, by using an effective selection
strategy, Viola and Jones manage to find a small set of features
such that the detection algorithm in the test stage achieves a
remarkable detection accuracy with real-time performance.

For the purpose of explanation, we divide the feature selection
module into the feature evaluation function, which assigns a score
to each extracted feature, and the selection procedure, which makes
use of the evaluation function to find a favorable set of features.
Although in our method the evaluation function is actually embed-
ded in the selection procedure, the paper deals with these two
entities separately.

In this paper, feature selection is considered in the context of vi-
sual object detection. However, the proposed selection method is
ll rights reserved.
based on techniques that were initially designed for (binary) clas-
sification rather than detection setups. For this reason, we will now
briefly delineate the problem of feature selection in a classification
setup.

The goal in binary classification setups is to classify individual
images into two classes, often termed ‘positive’ and ‘negative’
class. The feature evaluation function can be formulated in a vari-
ety of ways. A common solution is to reward (i.e., assign a high
score to) features that occur frequently in positive but seldom in
negative images. Mutual information, correlation, and likelihood
ratio are all derived from this general idea. Dorkó and Schmid
(2003) compare the performance of mutual information and likeli-
hood ratio for object classification. Epshtein and Ullman (2005)
construct a hierarchy of fragments for visual classification and em-
ploy mutual information to select the most informative fragments
at each level. The evaluation function designed by Li et al. (2006)
rewards a feature F extracted from a class-C image if F is, given a
distance metric, close to many other features extracted from
class-C images and far from most features extracted from images
that do not belong to class C.

In object detection, where the goal is to find all instances of a
particular visual category (e.g., cars) in individual images, such fea-
ture evaluation functions can be used if the given detection prob-
lem is transformed into a classification problem. Viola and Jones
(2004) convert the problem of detecting faces in images into that
of classifying face-sized image windows. A window belongs to
the positive class if and only if it contains a face. Their evaluation
function rewards features that assume generally high values in
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positive windows and generally low values in negative windows,
or vice versa. Shotton et al. (2005) detect objects in a given image
via classifying individual locations in the image. A location is re-
garded as positive if and only if it is sufficiently close to the cen-
troid of a displayed object.

We perform a detection-to-classification transformation only in
the feature selection stage. The training image set consists of posi-
tive images, which contain examples of objects, and negative
images, which do not. For each feature, a classifier is constructed
that classifies individual training images as positive or negative
using a detection-based criterion. A feature is then assigned a high
score if the classifier associated with it classifies most training
images correctly. The feature evaluation function defined in this
way is incorporated into a selection procedure based on the Ada-
Boost algorithm (Freund and Schapire, 1997; Viola and Jones,
2004).

Our approach is partially inspired by the object detection meth-
od of Opelt et al. (2006). The authors originate from premises sim-
ilar to ours, but they design a different feature evaluation function.
In contrast to Opelt et al., we also consider the influence of the
number of selected features on detection accuracy. In particular,
we show that the number of features required to achieve favorable
detection results may be very low.

This paper brings forth two contributions. First, we devise a no-
vel formal criterion for evaluating features in an object detection
setup and integrate it into an AdaBoost-based selection strategy.
The presented selection scheme is combined with a detection pro-
cedure based on Leibe et al. (2004) and by the feature extraction
algorithm of Fidler et al. (2006). The unification of the powerful
extraction, selection, and detection mechanisms is our second
contribution.

The rest of the paper is structured as follows. Section 2 derives
the feature evaluation function and presents the selection proce-
dure. Section 3 describes the detection module. Section 4 outlines
the feature extraction module. In Section 5, the method is experi-
mentally evaluated. Section 6 brings the paper to a conclusion.
Fig. 1. A schematic depiction of the feature selection module. In each iteration, the AdaB
candidate feature, passing the current weight vector to the unit. The values SðF; IÞ are cal
subsequent text for explanation.
2. Feature selection

In this section, we derive the feature evaluation function (Sec-
tion 2.2) and describe its incorporation into the AdaBoost selection
procedure (Section 2.3). Prior to that, in Section 2.1, the selection
module is presented in terms of its interface and its relationship
with the detection module.

Fig. 1 displays a schematic overview of the entire selection
module.

2.1. The selection module in terms of its interface and its relationship
with the detection module

The following items constitute the input to the selection
procedure:

� An initial feature set, F ¼ fFigi.
� A training image set, I ¼ Iþ [I�.
� The desired number of selected features, T.

The image set should contain both positive images (Iþ) and
negative images (I�). Each positive image should display an object
of the target category and should be annotated by the object’s
bounding box. Negative images may display anything except any
objects of the target category.

The selection procedure returns the set of selected features,
fF ½1�; . . . ; F ½T�g, for a given T. The number T should be given in ad-
vance. This paper does not deal with the problem of seeking the
optimal number of selected features.

The selection procedure uses the detection module and there-
fore makes certain assumptions regarding its functioning. Given
a set of features G �F and an image I, the detection algorithm
(a part of the detection module) is expected to produce object
detection hypotheses for I using only features in G. Each detection
hypothesis H should be accompanied by a non-negative real num-
ber sðHÞ, called ‘strength’ or ‘(confidence) score’, which indicates
oost selection procedure invokes the evaluation function computation unit for each
culated for each feature–image pair in advance, using the detection module. See the



50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

Positive images Negative images

L. Fürst et al. / Pattern Recognition Letters 29 (2008) 1603–1612 1605
the detection algorithm’s degree of belief that hypothesis H cor-
rectly describes the position and size of an object in I. Whether H
is indeed correct should be determined by a procedure indepen-
dent of the detection algorithm. Any detection method that fulfills
these minimum requirements may be used in conjunction with the
proposed selection procedure.

2.2. The feature evaluation function

This section gradually derives the feature evaluation function,
u : F! Rþ0 , which assigns score to individual features from F.
To begin with, let us define a threshold-based binary classifier that
classifies training images according to the following rule:

dF;hðIÞ ¼
1 if SðF; IÞP h;

0 if SðF; IÞ < h:

�
ð1Þ

The function S : F�I! R will be defined later; for the time being,
no definite meaning is to be associated with it. Classifier dF;h classi-
fies image I as positive (dF;hðIÞ ¼ 1) if the value of function S for fea-
ture F and image I is greater than or equal to threshold h. Otherwise,
the image is classified as negative.

Let yI represent the true class of training image I: yI ¼ 1 if
I 2 Iþ, and yI ¼ 0 if I 2 I�. The expression jdF;hðIÞ � yIj thus equals
0 for all correctly classified images and 1 for all misclassified
images. The error rate of classifier dF;h is calculated as a weighted
sum of such expressions over the entire training image set:

�ðF; h; wÞ ¼
X
I2I

wIjdF;hðIÞ � yIj: ð2Þ

The weight vector w ¼ ðwIÞI2I is a variable manipulated by the Ada-
Boost algorithm (Section 2.3). The vector’s initial value is
w½1� ¼ ðw½1�I ÞI2I, where

w½1�I ¼
1=ð2jIþjÞ if I 2 Iþ;

1=ð2jI�jÞ if I 2 I�:

�
ð3Þ

By this definition, the positive and the negative images initially
have the same collective weight:

P
I2Iþw½1�I ¼

P
I2I�w½1�I ¼ 1=2 (Fre-

und and Schapire, 1997). After initialization, AdaBoost iteratively
modifies vector w.

As shown in Fig. 1, the evaluation function is designed to act as
a subroutine of the AdaBoost selection procedure. However, the
evaluation function may also be used directly to select features.
In this case, w has to be a constant rather than a variable; we
use w ¼ w½1�. The subsequent equations involve w as a parameter,
so they apply to both selection approaches.

Given a feature F and a weight vector w, the error rate of clas-
sifier dF;h depends solely on threshold h. We will be interested only
in the optimal threshold, which is the value of h that leads to the
minimum error rate:1

h�ðF; wÞ ¼ arg min
h
�ðF; h; wÞ: ð4Þ

To find the optimal threshold for the given F and w, at most jIj þ 1
distinct candidate h values have to be checked (plugged into (2)). To
see this, let hS1; . . . ; SjIji represent the ascendingly sorted sequence
of values SðF; IÞI2I for the given F. The intervals
ð�1; S1�; ðS1; S2�; . . . ; ðSjIj�1; SjIj�; ðSjIj;1Þ collectively cover the en-
tire axis R, so the optimal threshold must reside in one of them.
Consider now the interval ðSi; Siþ1� for some i. All thresholds
h 2 ðSi; Siþ1� make the classifier dF;h produce the same output on I:
those images for which SðF; IÞP Siþ1 are classified as positive, and
1 To speak of ‘the’ optimal threshold is somewhat misleading, since there may be
several h values leading to the minimum error rate. However, all optimal thresholds
will be considered equivalent. ‘The optimal threshold’ will thus represent any optimal
threshold for the given classification setup.
all others as negative, regardless of the exact value of h within this
interval. Therefore, all h 2 ðSi; Siþ1� lead to the same error rate. This
reasoning applies to all considered intervals. Each interval is a set
of thresholds that lead to the same classification error rate. There-
fore, to find the optimal threshold, it suffices to check one arbitrary
threshold per interval. Since there are at most jIj þ 1 intervals, at
most jIj þ 1 candidates for the optimal threshold have to be
checked.

The optimal classifier for feature F and vector w classifies train-
ing images using the optimal threshold for F and w : d�F;w � dF;h�ðF;wÞ.
The feature evaluation function is defined as the accuracy of the
optimal classifier over I:

uðF; wÞ ¼ 1� �ðF; h�ðF; wÞ; wÞ: ð5Þ

Function u will be fully determined once the function S : F�I! R

is defined. Let us first describe how the distribution of the SðF; IÞ
values over I 2 I for a fixed F and for w ¼ w½1� affects the evaluation
function’s value.

Consider the situation in which the distribution ðSðF; IÞÞI2I con-
sistently assumes relatively high values for positive images and
relatively low values for negative images (Fig. 2). In this case, the
optimal threshold will lie somewhere between these ‘high’ and
‘low’ values, and the optimal classifier will correctly classify most
of the training images. As a consequence, feature F will be assigned
a high evaluation score uðF; w½1�Þ. If, however, the distribution of
SðF; IÞ over the training image set were uniform or random, then
even the optimal classifier would be unable to achieve a low error
rate; regardless of the threshold value, a considerable percentage
of training images would always be misclassified. Feature F would
hence be assigned a low evaluation score.

The evaluation function should reward features that are
deemed to be ‘potentially useful’ for detecting objects of the given
category. We consider a feature F to be ‘potentially useful’ if it pos-
sesses the following properties:

Distinctiveness. F occurs frequently in positive and rarely in nega-
tive training images.

Predictiveness. The detection algorithm, if limited to the use of
feature F, often correctly predicts the object’s posi-
tion in positive images.

A feature F that is both distinctive and predictive should thus be
assigned a high score uðF; w½1�Þ, and vice versa. The score depends
on the distribution ðSðF; IÞÞI2I, which should therefore be favorable
(high for I 2 Iþ, low for I 2 I�) for a ‘potentially useful’ feature F.
As will be shown shortly, the following definition of function S
makes the evaluation function model the ‘potential usefulness’ cri-
terion in the desired way:
ig. 2. The distribution ðSðF�M; IÞÞI2M , where M denotes the training image set for
e ETHZ mugs dataset (details in Section 5) and F�M represents the highest-scored
ature obtained for M. The horizontal dashed line visualizes the optimal threshold
r w ¼ w½1� . The optimal classifier misclassifies 26 (out of 184) positive images and

6 (out of 224) negative images. For 20 positive images, SðF�M; IÞ equals 0. These
ages would be misclassified for any positive threshold.
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� For a positive training image Iþ:

SðF; IþÞ ¼
sðH�ðIþjFÞÞ if H�ðIþjFÞ is correct;
0 otherwise:

�
ð6Þ

� For a negative training image I�:

SðF; I�Þ ¼ sðH�ðI�jFÞÞ: ð7Þ

H�ðIjFÞ denotes the strongest detection hypothesis obtained by
applying the detection algorithm to image I, with the additional
requirement that the detection algorithm use only feature F to
build hypotheses. sðHÞ denotes the strength of a hypothesis H.
The correctness of each hypothesis is determined as described in
Section 5.3.

If a given feature F is both distinctive and predictive, SðF; IÞ is,
according to (6) and (7), generally high for positive and low for
negative images, which implies a high value of uðF; w½1�Þ. If feature
F is indistinctive, the distribution of SðF; IÞ values over the image
set is more or less random. If F is non-predictive, SðF; IÞ is zero
for many positive images. In both cases, F is assigned a low evalu-
ation score. To summarize, the evaluation function rewards a fea-
ture if and only if it is ‘potentially useful.’ Our definition of
functions S and u is therefore justified.
2.3. The selection procedure

Given a desired number of selected features, T, the simplest
selection procedure returns the T features with the highest values
of uðF; w½1�Þ. However, such a selection approach tends to produce
redundant selection sets, since features with similar evaluation
scores may exhibit a high degree of interdependence. This phenom-
enon is discussed in Cover (1974) and Peng et al. (2005).

Owing to its design, which was motivated by Viola and Jones
(2004), the evaluation function can be straightforwardly incorpo-
rated into an AdaBoost selection framework, which deals with fea-
ture interdependence in an implicit fashion. Although AdaBoost
was developed as a method to enhance classification accuracy by
combining simple classifiers (Freund and Schapire, 1997), it has re-
cently been adapted as a feature selection technique in many clas-
sification and detection setups (Viola and Jones, 2004; Torralba
et al., 2004; Shotton et al., 2005; Zhang et al., 2005; Opelt et al.,
2006; Li et al., 2006).

The (simplified) AdaBoost procedure, shown as Algorithm 1,
iteratively selects features and updates the image weight vector
w. In each iteration, AdaBoost selects the feature (F ½t�) that
achieves the highest score uðF; wÞ with respect to the current va-
lue of w. After that, AdaBoost decreases the weights of the
images that were correctly classified by the optimal classifier
(d½t�) for the selected feature F ½t�. The relative importance of the
images misclassified by d½t� thus increases. As a result, the next
iteration is likely to select a feature such that the associated
optimal classifier, d½tþ1�, performs well on the images that were
misclassified by d½t�. The described weight-adjusting mechanism
thus encourages the complementarity between successive selec-
tions, which leads to a lower degree of redundancy in the final
set of selected features.
3. The detection module

The implemented detection module is based on the method of
Leibe et al. (2004) (presented in detail in Leibe (2004)), which is
fairly robust to noise, occlusion, and intra-class variation. The
underlying star-shaped model, ISM (Implicit Shape Model), has
been successfully applied to various object detection and classifica-
tion setups (Fritz et al., 2005; Mikolajczyk et al., 2006; Thomas
et al., 2006).

Section 3.1 presents a general idea of the algorithm to learn ISM.
Section 3.2 describes the most basic detection algorithm, which as-
sumes that the scale (i.e., size) of all test objects is fixed and known
in advance. Section 3.3 presents an algorithm that often substan-
tially improves the detection accuracy of the basic approach. Sec-
tion 3.4 outlines how the method can be adapted to the
multiscale detection scenario, which requires the determination
of the unknown size, in addition to the unknown location, of each
test object. Section 3.5 contains some concluding remarks.
3.1. Learning

The learning algorithm accepts a set of local features G0 and a
set of training images represented by these features. Each image
should display an object with a known bounding box. In each im-
age, the center of the object’s bounding box is regarded as the ref-
erence point, the ‘object center.’ For each feature Gi, the learning
algorithm nonparametrically estimates the probability distribution
pðcjGiÞ using the training images. For each pair ðc;GiÞ, pðcjGiÞ signi-
fies the probability that the object center is located at position
c þ d if feature Gi occurs at an arbitrary position d.

Algorithm 1. The simplified AdaBoost algorithm for feature
selection

Require:

(a) A training image set I with class labels yI .
(b) The initial feature set, F.
(c) The desired number of features (iterations), T.

Ensure: The sequence of selected features, hF ½1�; . . . ; F ½T�i.
Algorithm:

1: F0 :¼F;

2: Compute the initial weights, w½1� ¼ fw½1�I gI , using (3).
3: for t ¼ 1 to T do
4: Normalize the image weights w½t� ¼ fw½t�I gI:
w½t�I :¼ w½t�IP
J2Iw½t�J

for all I 2 I: ð8Þ

5: Select the feature having the highest evaluation score
with respect to the current weights:

F ½t� ¼ arg max
F2F0

uðF; w½t�Þ: ð9Þ

Let h½t� ¼ h�ðF ½t�; w½t�Þ; d½t� ¼ dF½t� ;h½t� , and �½t� ¼ �ðF ½t�; h½t�;
w½t�Þ ¼ 1� uðF ½t�; w½t�Þ denote the optimal threshold,
the optimal classifier, and the optimal classifier’s error
rate, respectively, for the selected feature.

6: F0 :¼F0 n fF ½t�g.
7: Update the weights:

w½tþ1�
I ¼

�½t�

1��½t� w
½t�
I if d½t�ðIÞ ¼ yI

w½t�I otherwise:

(
ð10Þ

8: end for
3.2. The basic single-scale detection algorithm

The detection algorithm accepts an input image and a feature
set G ¼ fG1; . . . ;Gmg � G0. The image has to be represented by
features from G. The visual elements extracted from the image (a
visual element shall refer to an image entity that can be directly
matched against individual features) vote for various object center
hypotheses. According to Leibe (2004), the cumulative voting score
for a hypothesized object center location c amounts to
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s0ðcÞ ¼
X

k

Xm

i¼1

pðcjGi;pkÞ; PðGijEkÞ; ð11Þ

where Ek denotes a visual element extracted at position pk. The
probability pðcjGi;pkÞ is by the basic ISM assumption equal to the
learned probability pðc � pkjGiÞ.

The final set of hypotheses is composed of stable local maxima
of function s : R2 ! R, which may be obtained by smoothing the
function s0 or by the more complex Mean-Shift algorithm. The con-
fidence score, or strength, of a final hypothesis H � c (denoted by
sðHÞ) is computed from the values of s0 in the neighborhood of
point c as determined by the smoothing kernel.

3.3. The hypothesis attenuation algorithm

This algorithm is able to improve the detection accuracy if (i) in
most object-containing test images, the strongest hypothesis cor-
rectly detects one of the displayed objects, but (ii) the overall
detection accuracy is negatively affected by the presence of glob-
ally strong incorrect hypotheses, which might not be the strongest
within their source images, but are still stronger than many correct
hypotheses in the entire image set.

According to the voting scheme, a single visual element might
contribute score to several hypotheses in the image. In the first
iteration of the attenuation algorithm, all visual elements E� that
voted for the strongest hypothesis (H�) are uniquely assigned to
H�. The strength of H� does not change, but each of the remaining
hypotheses loses the score that it received from elements E�. As a
result, a hypothesis H 6¼ H� that originally drew much of its
strength from elements E� becomes substantially weaker. Hypoth-
esis H� and elements E� are then eliminated from further consider-
ation. In the next iteration, the algorithm again finds the strongest
hypothesis and uniquely assigns all contributing elements to it.
The process repeats until all visual elements have been uniquely
assigned. In practice, the conditions from the previous paragraph
are often met, so this simple algorithm greatly increases detection
accuracy.

The described algorithm was designed by Leonardis et al. (1995)
as an approach to solving the general model selection problem. The
algorithm, which is based on the MDL (Minimum Description
Length) principle, has been thereafter applied to various problem
domains that involve model selection. Leibe et al. (2004) success-
fully applied it to the object detection domain.

For the rationale and the theoretical foundations of the de-
scribed algorithm, the reader is referred to the aforementioned pa-
pers and to Leibe (2004).
3.4. Detecting objects at multiple scales

The presented method can be straightforwardly extended to the
multiscale scenario. The learning algorithm requires no changes; it
still builds a single-scale representation. The basic multiscale
detection algorithm constructs a scale-space pyramid for each in-
put image and performs the voting procedure for each pyramid le-
vel separately. By contrast, the attenuation algorithm is adapted to
operate over the whole pyramid.
2 http://l2r.cs.uiuc.edu/~cogcomp/Data/Car.
3 http://pascal.inrialpes.fr/data/horses.
4 http://www.vision.ee.ethz.ch/~ferrari.
3.5. Concluding remarks

The detection module is used in two different contexts. In the
test stage, the detection algorithm employs the selected features
to detect objects in test images. The detection algorithm is also in-
voked in the training stage, when computing function S (Eqs. (6)
and (7)). To reduce the processing time, a simplified version of
the detection algorithm is used in this latter case. This simplified
algorithm analyzes each input image only at its original scale
and does not include the hypothesis attenuation algorithm.

To determine the correctness of a detection hypothesis (Section
5.3), a bounding box has to be predicted for each hypothesized ob-
ject. The center of each hypothesized bounding box is set to the
predicted object center location. In the single-scale version, the
size of each bounding box is set to the average training object size.
To predict the size of the bounding box for a hypothesis H in the
multiscale version, the average training size is divided by the rela-
tive scale at which H has been detected.

4. Parts composed of parts as the underlying features

The feature extraction stage is instantiated by the method
developed by Fidler et al. (2006), which builds a hierarchy of ‘parts
composed of parts.’ Layer 1 of the hierarchy consists of atomic
parts, each of which takes the form of an oriented Gabor filter ker-
nel. Each part of a general layer l > 1 is a loose geometric compo-
sition of one or more parts of layer l� 1 and is robustly described
by the locations and orientations of its constituents (subparts) rel-
ative to the constituent in the center of the composition.

Given a set of training images, the hierarchy of parts for the tar-
get visual category is learned in a layer-by-layer fashion by a sta-
tistically driven procedure. The constructed parts of a chosen
layer L form the set of extracted features, which subsequently en-
ters our selection procedure.

To represent a (novel) image by layer-L parts, the image is first
represented by layer-1 parts, then by layer-2 parts, etc. Represent-
ing an image by layer-1 parts includes convolving the image with
the layer-1 filter collection, storing the maximum-response filter
index for each pixel, and performing an information-compaction
step. Since parts of a layer l > 1 are composed of parts of layer
l� 1, the layer-l representation can be obtained from the layer-
(l� 1) representation via a straightforward matching procedure.

For more information, the reader is referred to Fidler et al.
(2006) and to Fidler and Leonardis (2007).

5. Experimental evaluation

The proposed approach was evaluated on the following test im-
age datasets:

� UIUC cars (Agarwal et al., 2004)2: Comprises 108 images display-
ing 139 objects of interest in total.

� INRIA horses3: 170 images; 180 objects.
� ETHZ4 Apple� logos: 40 images; 44 objects.
� ETHZ bottles: 48 images; 55 objects.
� ETHZ mugs: 48 images; 66 objects.

For each dataset, a separate detection setup was constructed.
The INRIA and ETHZ datasets (Ferrari et al., 2006) exhibit a

much greater view and scale variance than the UIUC dataset. On
the other hand, UIUC includes both left-to-right and right-to-left
cars, whereas the other datasets involve only one (broad) view
direction.

Sections 5.1 and 5.2 provide some implementation details on
the training and the test stage, respectively. Sections 5.3 and 5.4
present the employed evaluation criteria and detection accuracy
measure. Section 5.5 presents and discusses experimental results.

http://l2r.cs.uiuc.edu/~cogcomp/Data/Car
http://pascal.inrialpes.fr/data/horses
http://www.vision.ee.ethz.ch/~ferrari


Table 1
Selected implementation details

Setup Number of training
images (pos./neg.)

Average training object
size (width � height)

Scale range for
test imagesa

Cars 100 + 550/500b 218� 71 �5 to þ1
Horses 328/182 141� 109 �10 to þ1
Apple logos 54/420 98� 120 �8 to þ3
Bottles 66/366 58� 219 �7 to þ3
Mugs 184/224 149� 137 �7 to þ3

a Designator r corresponds to a relative scale of 2r=4. The range ‘a to b’ thus
implies that the method is potentially able to detect objects of size between 2�b=4R0

and 2�a=4R0, where R0 ¼ ðwidth0;height0Þ denotes the average training object size.
b See text for explanation.

0 5 10 15 20 25 30 35 40 45 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

The number of selected features

F
m

ax

UIUC cars

0 5 10 15 20 25 30 35 40 45 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

The number of selected features

F
m

ax

INRIA horses

0 5 10 15 20 25 30 35 40 45 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

The number of selected features

F
m

ax

ETHZ Apple(R) logos

0 5 10 15 20 25 30 35 40 45 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

The number of selected features

F
m

ax

ETHZ bottles

0 5 10 15 20 25 30 35 40 45 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

The number of selected features

F
m

ax

ETHZ mugs

AdaBoost

descending u(F; w [1])

AdaBoost

descending u(F; w[1])

AdaBoost

descending u(F; w[1])

AdaBoost

descending u(F; w[1])

AdaBoost

descending u(F; w[1])

Fig. 3. The influence of the number of selected features on the detection accuracy. The AdaBoost selection algorithm is compared with a procedure that selects features in
descending order of uðF; w½1�Þ.

Table 2
Fmax and EER obtained with the first 5, 10, and 50 AdaBoost-selected features, and
with all (several hundred) extracted features

# features Fmax % EER %

5 10 50 All 5 10 50 All

Cars 92.3 90.8 92.5 80.6 91.4 89.9 91.4 79.9
Horses 69.4 81.7 83.0 71.6 69.4 81.1 82.2 70.0
Apple logos 83.5 84.1 89.2 84.3 81.8 84.1 84.1 79.5
Bottles 59.3 61.4 72.2 68.6 58.2 60.0 70.9 65.5
Mugs 64.6 75.6 83.5 74.4 62.1 71.2 81.8 69.7
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Fig. 4. Recall–precision curves obtained using the first 5, 10, and 50 AdaBoost-selected features.
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5.1. Training stage implementation details

The training stage makes use of two image sets: the first con-
sists only of positive images and is used in the feature extraction
and ISM learning procedures, while the second consists of both po-
sitive and negative images and is used in the feature selection pro-
cedure. In all setups, the two training sets were completely
separated from the test set, as they were acquired from different
sources. In the UIUC setup, the TU Darmstadt dataset5 (100 images)
served as the first training set, and the UIUC training dataset (550
5 http://www.pascal-network.org/challenges/VOC/databases.html.
positive, 500 negative images) served as the second. In all other set-
ups, the first training set also played the role of the positive subset of
the second set.

The Weizmann horse dataset6 (Borenstein and Ullman, 2002)
was used in the training stage for the INRIA setup. The training
images for the ETHZ setups, as well as the negative image set for
the INRIA setup, were acquired from various Web sources, including
Google Image Search.

Table 1 lists the number of training examples and the average
training object size for each detection setup.
6 http://www.msri.org/people/members/eranb.

http://www.pascal-network.org/challenges/VOC/databases.html
http://www.msri.org/people/members/eranb
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5.2. Test stage implementation details

Every test image was analyzed at every scale within a given set-
up-specific range. The employed scale ranges (the last column of
Table 1) typically encompassed 11–12 levels in the scale-space
pyramid, or 2.5–2.75 octaves, considering that each octave com-
prised four levels.

5.3. Evaluation criteria

When evaluated on a given test image, the detector returns a set
of hypothesized bounding boxes, each of which is characterized by
its center [ðxH; yHÞ], width (wH), and height (hH). Let xT ; yT ; wT ; and
hT denote the center and the size of the true bounding box of an
object. A hypothesis is counted as correct if the following condi-
tions are satisfied:

� The distance between the true and the hypothesized object cen-
ter, relative to the true object size, is below a specified threshold.
Formally,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðxH � xTÞ
wT

� �2

þ 2ðyH � yTÞ
hT

� �2
s

6 0:5: ð12Þ

� The true bounding box covers at least 50% of the area of the
hypothesized bounding box.

� The hypothesized bounding box covers at least 50% of the area of
the true bounding box.

The above evaluation criterion, introduced by Leibe (2004), was
adopted for all detection setups except UIUC. Several authors have
experimented with the UIUC dataset, so we decided to compare
our results with theirs. To make this possible, the criterion pro-
posed by Agarwal et al. (2004) had to be used. According to this cri-
terion, a hypothesis is considered correct if

ðxT � xHÞ2

a2
h

þ ðyT � yHÞ
2

a2
w

þ ðwT �wHÞ2

a2
r

6 1; ð13Þ

where ah ¼ 0:25hT and aw ¼ ar ¼ 0:25wT .
Table 3
The first ten selected features for each setup. The selection algorithm was presented with
per detection setup

Dataset

Cars

Horses

Apple logos

Bottles

Mugs
Following Leibe (2004) and Agarwal et al. (2004), we incorpo-
rated an additional rule into both criteria: If multiple hypotheses
correctly predict the same object, only the strongest one is ac-
cepted as correct, while all others are counted as false positives
(i.e., incorrect hypotheses).

5.4. Detection accuracy measure

As argued by Agarwal et al. (2004), the most suitable measure
for evaluating detection accuracy on a given test set is a recall–pre-
cision curve (RPC). Let H denote the set of all detection hypotheses,
correct and incorrect, gathered for all images in the given test set.
Recall and precision are defined as follows:

RecallðsÞ ¼ jTPðsÞj
# objects

; ð14Þ

PrecisionðsÞ ¼ jTPðsÞj
jTPðsÞj þ jFPðsÞj : ð15Þ

In the above definition, #objects denotes the total number of ob-
jects of interest in the entire test set. TPðsÞ and FPðsÞ denote the sets
of true positives and false positives, respectively, whose strength is
at least s:

TPðsÞ ¼ fH 2HjðH is correctÞ ^ ðsðHÞP sÞg; ð16Þ
FPðsÞ ¼ fH 2HjðH is incorrectÞ ^ ðsðHÞP sÞg: ð17Þ

As s increases, the number of hypotheses in TPðsÞ and FPðsÞ
decreases.

RPC is a parametric curve (s being the parameter) that visual-
izes the relationship between ð1� PrecisionðsÞÞ and RecallðsÞ as
s increases from the strength of the weakest hypothesis in H to
the strength of the strongest hypothesis in H. An RPC may be char-
acterized by its maximum F-measure:

Fmax ¼max
s

FðsÞ ¼max
s

2 	 RecallðsÞ 	 PrecisionðsÞ
RecallðsÞ þ PrecisionðsÞ : ð18Þ

Another commonly employed measure for evaluating RPCs is equal-
error rate (EER), which is defined as recall at the point where recall
and precision are equal.
all features extracted at layer 3. On average, the extracted set comprised 843 features

The first 10 AdaBoost-selected features
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A more detailed discussion on RPCs is offered in Agarwal et al.
(2004).

5.5. Experimental results and discussion

Fig. 3 visualizes the relationship between the number of se-
lected features and the detection accuracy for individual setups.
The figure also compares the developed AdaBoost selection scheme
with a strategy that simply selects features in descending order of
Table 4
Detection results for the UIUC car dataset: a comparison between our results
(obtained using 5, 10, or 50 AdaBoost-selected features) and results reported by other
authors

Method Fmax (%) EER (%)

Ours, 5 features 92.3 91.4
Ours, 10 features 90.8 89.9
Ours, 50 features 92.5 91.4
Agarwal et al. (2004) 44.0 39.6
Fritz et al. (2005) Not given 87.8
Mutch and Lowe (2006) Not given 90.6

Fig. 5. Some examples of detections for all five datasets using the first 10 AdaBoost-selec
F-measure (Eq. (18)). A lower threshold would result in fewer missing detections and m
evaluation scores uðF; w½1�Þ. Features selected by AdaBoost prove to
be significantly more appropriate for the experimental object
detection tasks than features selected according to uðF; w½1�Þ. As
noted in Section 2.3, AdaBoost involves a weight-adjustment
mechanism that discourages redundancy in the selected set.

The obtained results provide affirmative evidence for the de-
vised AdaBoost selection scheme. In the UIUC setup, Fmax ¼
91:0% and EER¼ 90:7% when cars are detected using just four
AdaBoost-selected features. With as few as seven features, the
detection accuracy reaches its maximum (Fmax ¼ 93:7%,
EER ¼ 92:1%). Table 2 shows the dependence of both Fmax and
EER on the number of selected features. If the selection stage is by-
passed and all extracted features are used in the test stage (the ‘All’
column in Table 2), the detection accuracy drops, which further
demonstrates the significance of feature selection.

Fig. 4 displays recall–precision curves for individual detection
setups.

The first 10 AdaBoost-selected features for each category are dis-
played in Table 3. Despite their apparent simplicity, these features
collectively possess sufficient strength to bring about a relatively
high detection accuracy. As shown in Table 4, our results for the
UIUC dataset are comparable to results reported by other authors.
ted features. The detection threshold was set to the value that led to the maximum
ore false positives, and vice versa.
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The AdaBoost curves in Fig. 3 typically grow very rapidly at the
beginning, but then they start to stagnate or fluctuate. We surmise
that detection accuracy could be further improved only by increas-
ing the complexity of extracted features. Simple features are able
to distinguish a few essential patterns, which, as we demonstrated,
suffices for some detection tasks. However, relying exclusively on
simple features imposes an accuracy barrier that cannot be crossed
merely by enlarging the population of selected features. An effec-
tive selection strategy quickly discovers the features that capture
the most essential patterns, but more complex patterns can be
distinguished only by using more complex features. Since the spec-
ificity of features grows with increasing complexity, a compara-
tively large number of complex features might have to be
selected to adequately cover the essential patterns. If the selection
procedure were provided with more complex input features, the
curves in Fig. 3 would probably grow more slowly but would even-
tually surpass the curves obtained for the employed features.

Fig. 5 provides some concrete examples of correct and incorrect
detections. False positives commonly arise in highly cluttered
areas, but sometimes they are due to inherent properties of the
detection model. The second image in the first row is a rare exam-
ple of a failure due to the attenuation algorithm. The correct
hypothesis had initially been slightly weaker than the highlighted
false positive. Both hypotheses had received much of their score
from the rear wheel of the left car. As a consequence of both facts,
the algorithm significantly attenuated the correct hypothesis but
left the false positive intact.

Feature selection considerably affects the temporal efficiency of
the detection algorithm in the test stage. Using the first 5 Ada-
Boost-selected features, the algorithm consumes 3.9 s on average
to process a single UIUC test image at all seven scales. With 50 fea-
tures, the consumed amount of time rises to 16.6 s per image. With
all 920 features, the detection algorithm requires 117.8 s on aver-
age per image. All experiments were run on an Intel Core 2 Duo
machine using a Matlab implementation.
6. Conclusion

We devised a novel feature evaluation function for object detec-
tion and embedded it into an AdaBoost-based selection procedure.
The feature selection module was combined with the feature
extraction method of Fidler et al. (2006) and the object detection
method of Leibe et al. (2004).

The effectiveness of the developed selection strategy was exper-
imentally confirmed. In three out of five detection setups, as few as
six simple features suffice to achieve a fairly high level of detection
accuracy. Whereas the selection algorithm undoubtedly plays a
significant role, the overall success of the method should also be
attributed to the feature extraction and object detection modules.

Currently, the feature selection module can be combined only
with a single-category detection algorithm. Our future research
might thus be directed toward adapting the selection technique
for the multi-category detection domain, where the objective is
to predict the category of each hypothesized object in addition to
its location and size.

Another potentially interesting research issue is automatic
determination of the optimal number of selected features. A viable
approach to this problem is to design a criterion that evaluates the
trade-off between the given number of selected features and the
corresponding detection accuracy on a training image set.
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