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Abstract. The Visual Object Tracking challenge VOT2020 is the eighth
annual tracker benchmarking activity organized by the VOT initiative.
Results of 58 trackers are presented; many are state-of-the-art trackers
published at major computer vision conferences or in journals in the re-
cent years. The VOT2020 challenge was composed of five sub-challenges
focusing on different tracking domains: (i) VOT-ST2020 challenge fo-
cused on short-term tracking in RGB, (ii) VOT-RT2020 challenge fo-
cused on “real-time” short-term tracking in RGB, (iii) VOT-LT2020 fo-
cused on long-term tracking namely coping with target disappearance
and reappearance, (iv) VOT-RGBT2020 challenge focused on short-term
tracking in RGB and thermal imagery and (v) VOT-RGBD2020 chal-
lenge focused on long-term tracking in RGB and depth imagery. Only
the VOT-ST2020 datasets were refreshed. A significant novelty is intro-
duction of a new VOT short-term tracking evaluation methodology, and
introduction of segmentation ground truth in the VOT-ST2020 challenge
– bounding boxes will no longer be used in the VOT-ST challenges. A
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new VOT Python toolkit that implements all these novelites was in-
troduced. Performance of the tested trackers typically by far exceeds
standard baselines. The source code for most of the trackers is publicly
available from the VOT page. The dataset, the evaluation kit and the
results are publicly available at the challenge website47.

Keywords: Visual object tracking, performance evaluation protocol,
state-of-the-art benchmark, RGB, RGBD, depth, RGBT, thermal im-
agery, short-term trackers, long-term trackers

1 Introduction

Visual object tracking remains a core computer vision problem and a popular
research area with many open challenges, which has been promoted over the
last decade by several tracking initiatives like PETS [86], CAVIAR48, i-LIDS 49,
ETISEO50, CDC [20], CVBASE 51, FERET [58], LTDT 52, MOTC [39,66] and
Videonet 53. However, prior to 2013, a consensus on performance evaluation was
missing, which made objective comparison of tracking results across papers im-
possible. In response, the VOT47 initiative has been formed in 2013. The primary
goal of VOT was establishing datasets, evaluation measures and toolkits as well
as creating a platform for discussing evaluation-related issues through organiza-
tion of tracking challenges. This lead to organization of seven challenges, which
have taken place in conjunction with ICCV2013 (VOT2013 [36]), ECCV2014
(VOT2014 [37]), ICCV2015 (VOT2015 [35]), ECCV2016 (VOT2016 [34]), ICCV2017
(VOT2017 [33]), ECCV2018 (VOT2018 [32]) and ICCV2019 (VOT2019 [31]).

Initially the VOT considered single-camera, single-target, model-free, causal
trackers, applied to short-term tracking. The model-free property means that
the only training information provided is the bounding box in the first frame.
The short-term tracking means that trackers are assumed not to be capable of
performing successful re-detection after the target is lost. Causality requires that
the tracker does not use any future frames, or frames prior to re-initialization,
to infer the object position in the current frame. In 2018, the VOT tracker cat-
egories were extended by an additional one: single-camera, single-target, model-
free long-term trackers. Long-term tracking means that the trackers are required
to perform re-detection after the target has been lost and are therefore not reset
after such an event.

This paper presents the VOT2020 challenge, organized in conjunction with
the ECCV2020 Visual Object Tracking Workshop, and the results obtained.
Several novelties are introduced in VOT2020 with respect to VOT2019, which

47 http://votchallenge.net
48 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
49 http://www.homeoffice.gov.uk/science-research/hosdb/i-lids
50 http://www-sop.inria.fr/orion/ETISEO
51 http://vision.fe.uni-lj.si/cvbase06/
52 http://www.micc.unifi.it/LTDT2014/
53 http://videonet.team
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consider encoding of the ground truth target positions, performance measures
and a complete re-implementation of the VOT toolkit in a widely-used program-
ming language for easier tracker integration. In the following we overview the
most closely related works, discuss issues with exisiting performance measures
and point out the contributions of VOT2020.

1.1 Short-term tracker evaluation

Over the last eight years, the Visual Object Tracking initiative (VOT) has been
gradually developing performance evaluation methodology with an overall guide-
line to develop interpretable measures that probe various tracking properties.
At VOT inception in 2013, a simple evaluation protocol was popularized by
OTB [77]. This methodology applies a no-reset experiment in which the tracker
is initialized in the first frame and it runs unsupervised until the end of the
sequence. The overall performance is summarized by area-under-the-curve prin-
ciple, which has been showed in [70,72] to be an average overlap (AO) computed
over the entire sequence of frames. A downside of the AO is that all frames after
the first failure receive a zero overlap, which increases bias and variance of the
estimator [38].

Alternatively, based on the analysis later published in [72,38], VOT proposed
two basic performance measures: accuracy and robustness. The goal was to pro-
mote trackers that well approximate the target position, and even more impor-
tantly, do not fail often. The first methodology introduced in VOT2013 [36] was
based on ranking trackers along each measure and averaging the ranks. Due to
a reduced interpretation power and dependency of ranks on the tested trackers,
this approach was replaced in VOT2015 [35] by the expected average overlap
measure (EAO), which principally combines the individual basic measures.

To provide an incentive for community-wide exploration of a wide spectrum
of well-performing trackers and to reduce the pressure for fine-tuning to bench-
marks with the sole purpose of reaching the number one rank on particular test
data, VOT introduced the so-called state-of-the-art bound (SotA bound). Any
tracker exceeding this bound is considered state-of-the-art by the VOT standard.

While most of the tracking datasets [77,40,65,44,53,19,93,25,85,18,54] have
partially followed the trend in computer vision of increasing the number of
sequences, the VOT [36,37,35,38,34,33,32,31] datasets have been constructed
with diversity in mind and were kept sufficiently small to allow fast tracker
development-and-testing cycles. Several recent datasets [25,18] have adopted ele-
ments of the VOT dataset construction principles for rigorous tracker evaluation.
In VOT2017 [33] a sequestered dataset was introduced to reduce the influence of
tracker over-fitting without requiring to increase the public dataset size. Despite
significant activity in dataset construction, the VOT dataset remains unique
for its carefully chosen and curated sequences guaranteeing relatively unbiased
assessment of performance with respect to attributes.

In 2015, the VOT introduced a new short-term tracking challenge dedi-
cated to tracking in thermal imagery. The VOT short-term performance eval-
uation methodology was used with the LTIR [2] dataset. The challenge gradu-
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ally evolved into an RGB+Thermal short-term tracking and constructed a new
dataset based on [43]. The targets were re-annotated by rotated bounding boxes
using a semi-automatic protocol [3].

The VOT evaluation protocols have promoted development of robust short-
term trackers. But with increased robustness of modern trackers, a drawback
of the reset-based evaluation protocol has emerged. In the VOT performance
evaluation protocol a tracker is initialized in the first frame and whenever the
overlap between the reported and the ground truth target location (i.e., bound-
ing box) falls to zero, a failure is detected and the tracker is reset a fixed number
of frames later. The robustness is measured as the number of times the tracker
is reset and the accuracy is the average overlap between the periods of successful
tracking. This setup reflects the tracker performance in a practical application,
where the task is to track the target throughout the sequence, either automat-
ically, or by user intervention, i.e., a tracker reset. Furthermore, this approach
enables utilization of all sequence frames in the evaluation.

However, a point of tracking failure will affect the point of reset (tracker
re-initialization) and initialization points profoundly affect the tracking perfor-
mance. With recent development of very robust trackers, the initialization points
started to play a significant role in the final tracker ranking. In particular, we
have noticed that initialization at some frame might result in another failure
later on in the sequence, while initializing a few frames later might not. This
allows a possibility (although not trivially) for fine-tuning the tracker to fail on
more favorable frames and by that reducing the failure rate and increase the
overall apparent robustness as measured by the reset-based protocol.

Another potential issue of the existing VOT reset-based protocol is the defi-
nition of a tracking failure. A failure is detected whenever the overlap between
the prediction and ground truth falls to zero. Since resets directly affect the
performance, a possible way to reduce the resets is to increase the predicted
bounding box size, so to avoid the zero overlap. While we have not observed
such gaming often, there were a few cases in the last seven challenges where
the trackers attempted this and one of the trackers has been disqualified upon
identifying the use of the bounding box inflation strategy. But some trackers did
resort to reporting a slightly larger bounding box due to the strictness of the
failure protocol – the tracker will be reset if the zero overlap is detected in a
single frame, even if the tracker would have jumped right back on the target in
the next frame. We call this a short-term failure and the current protocol does
not distinguish between trackers robust to short-term failures and trackers that
fail completely.

1.2 Long-term tracker evaluation

A major difference between short-term (ST) and long-term (LT) trackers is that
LT trackers are required to handle situations in which the target may leave the
field of view for a longer duration. This means that a natural evaluation pro-
tocol for LT trackers is a no-reset protocol. Early work [30,57] directly adapted
existing object-detection measures precision, recall and F-measure based on 0.5
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IoU (overlap) threshold and several authors [68,52] proposed a modification of
the short-term average overlap measure. Valmadre et al. [28] introduced a mea-
sure that directly addresses the evaluation of the re-detection ability and most
recently Lukežič et. al. [49] proposed tracking precision, tracking recall and track-
ing F-measure that do not depend on specifying the IoU threshold. Their pri-
mary measure, the tracking F-measure, reduces to a standard short-term mea-
sure (average overlap) when computed in a short-term setup, thus closing the
gap between short- and log-term tracking measures. The measure is shown to
be extremely robust and allows using a very sparse temporal target annotation,
thus enabling using very long evaluation sequences at reduced annotation effort.
For these reasons, the measures and the evaluation protocol from [49] were se-
lected in 2018 as the main methodology for all VOT sub-challenges dealing with
long-term trackers.

Several datasest have been proposed for RGB long-term tracking evaluation,
starting with LTDT 52 and followed by [53,52,48,28,49]. The authors of [48]
argue that long-term tracking does not just refer to the sequence length, but
more importantly to the sequence properties, like the number and the length of
target disappearances, and the type of tracking output expected. Their dataset
construction approach follows these guidelines and was selected in VOT2018 for
the first VOT long-term tracking challenge and later replaced by the updated
dataset from [49].

In 2019 VOT introduced another long-term tracking challenge to promote
tracker operating with RGB and depth (RGBD). At the time, only two public
datasets were available, namely the PTB [67] and STC [78], with relatively short
sequences and limited range of scenes due to acquisition hardware restrictions.
Recently, a more elaborate dataset called CDTB [46] was proposed, which con-
tains many long sequences with many target disappearances, captured with a
range of RGBD sensors both indoor and outdoor under various lighting condi-
tions. This dataset was used in VOT2019 in the VOT-RGBD challenge.

1.3 The VOT2020 challenge

Since VOT2020 considers short-term as well as long-term trackers in separate
challenges, we adopt the definitions from [49] to position the trackers on the
short-term/long-term spectrum:

– Short-term tracker (ST0). The target position is reported at each frame.
The tracker does not implement target re-detection and does not explicitly
detect occlusion. Such trackers are likely to fail at the first occlusion as their
representation is affected by any occluder.

– Short-term tracker with conservative updating (ST1). The target po-
sition is reported at each frame. Target re-detection is not implemented, but
tracking robustness is increased by selectively updating the visual model
depending on a tracking confidence estimation mechanism.

– Pseudo long-term tracker (LT0). The target position is not reported
in frames when the target is not visible. The tracker does not implement
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explicit target re-detection but uses an internal mechanism to identify and
report tracking failure.

– Re-detecting long-term tracker (LT1). The target position is not re-
ported in frames when the target is not visible. The tracker detects tracking
failure and implements explicit target re-detection.

The evaluation toolkit and the datasets are provided by the VOT2020 orga-
nizers. The participants were required to use the new Python VOT toolkit that
implements the new evaluation protocols and the new ground truth encoding.
A toolkit beta testing period opened in early March 2020, and the challenge
officially opened on March 20th 2020 with approximately a month available for
results submission. Due to Covid-19 crisis, the VOT-RGBT team could not com-
plete all the preparations in time and has decided to postpone the opening of
the VOT-RGBT2020 sub-challenge to May 10th. The results submission dead-
line for all sub-challenges was May 3rd. The VOT2020 challenge thus contained
five challenges:

1. VOT-ST2020 challenge: This challenge was addressing short-term track-
ing in RGB images and has been running since VOT2013 with annual up-
dates and modifications. A significant novelty compared to 2019 was that
the target position was encoded by a segmentation mask.

2. VOT-RT2020 challenge: This challenge addressed the same class of track-
ers as VOT-ST2020, except that the trackers had to process the sequences in
real-time. The challenge was introduced in VOT2017. A significant novelty
compared to 2019 was that the target position was encoded by a segmenta-
tion mask.

3. VOT-LT2020 challenge: This challenge was addressing long-term track-
ing in RGB images. The challenge was introduced in VOT2018. The target
positions were encoded by bounding boxes.

4. VOT-RGBT2020 challenge: This challenge was addressing short-term
tracking in RGB+thermal imagery. This challenge was introduced in VOT2019
and can be viewed as evolution of the VOT-TIR challenge introduced in
VOT2015. The target positions were encoded by bounding boxes.

5. VOT-RGBD2020 challenge: This challenge was addressing long-term
tracking in RGB+depth (RGBD) imagery. This challenge was introduced
in VOT2019. The target positions were encoded by bounding boxes.

The authors participating in the challenge were required to integrate their
tracker into the new VOT2020 evaluation kit, which automatically performed
a set of standardized experiments. The results were analyzed according to the
VOT2020 evaluation methodology. Upon submission of the results, the partic-
ipants were required to classify their tracker along the short-term/long-term
spectrum.

Participants were encouraged to submit their own new or previously pub-
lished trackers as well as modified versions of third-party trackers. In the latter
case, modifications had to be significant enough for acceptance. Participants
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were expected to submit a single set of results per tracker. Changes in the pa-
rameters did not constitute a different tracker. The tracker was required to run
with fixed parameters in all experiments. The tracking method itself was allowed
to internally change specific parameters, but these had to be set automatically
by the tracker, e.g., from the image size and the initial size of the bounding box,
and were not to be set by detecting a specific test sequence and then selecting
the parameters that were hand-tuned for this sequence.

Each submission was accompanied by a short abstract describing the tracker,
which was used for the short tracker descriptions in Appendix 5. In addition,
participants filled out a questionnaire on the VOT submission page to catego-
rize their tracker along various design properties. Authors had to agree to help
the VOT technical committee to reproduce their results in case their tracker was
selected for further validation. Participants with sufficiently well-performing sub-
missions, who contributed with the text for this paper and agreed to make their
tracker code publicly available from the VOT page were offered co-authorship
of this results paper. The committee reserved the right to disqualify any tracker
that, by their judgement, attempted to cheat the evaluation protocols.

To compete for the winner of VOT2020 challenge, learning on specific datasets (OTB,
VOT, ALOV, UAV123, NUSPRO, TempleColor and RGBT234) was prohibited.
In the case of GOT10k, a list of 1k prohibited sequences was created in VOT2019,
while the remaining 9k+ sequences were allowed for learning. The reason was
that part of the GOT10k was used for VOT-ST2020 dataset update.

The use of class labels specific to VOT was not allowed (i.e., identifying
a target class in each sequence and applying pre-trained class-specific trackers
was not allowed). An agreement to publish the code online on VOT webpage
was required. The organizers of VOT2020 were allowed to participate in the
challenge, but did not compete for the winner titles. Further details are available
from the challenge homepage54.

VOT2020 goes beyond previous challenges by updating the datasets
in VOT-ST, VOT-RT, challenges, as well as introduction of the segmentation
ground truth. New performance evaluation protocol and measures were used
in the short-term tracking challenges and the new VOT2020 Python toolkit
was developed that implements all the novelties and ensures seamless use of
challenge-specific modalities and protocols.

2 Performance evaluation protocols

Since 2018 VOT considers two classes of trackers: short-term (ST) and long-term
(LT) trackers. These two classes primarily differ on the target presence assump-
tions, which affects the evaluation protocol as well as performance measures.
These are outlined in following two subsections. Section 2.1 introduces the new
short-term performance evaluation protocol and measures, while the standard
VOT long-term tracking evaluation protocol is overviewed in Section 2.2.

54 http://www.votchallenge.net/vot2020/participation.html
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2.1 The new anchor-based short-term tracking evaluation protocol

The main drawback of the existing VOT short-term performance evaluation pro-
tocol are the tracker-dependent resets, which induce a causal correlation between
the first reset and the later ones. To avoid this, the notion of reset is replaced
by initialization points (called anchors for short), which are made equal for all
trackers in the new protocol. In particular, anchors are placed on each sequence
∆anc frames apart, with the first and last anchor on the first and the last frame,
respectively. A tracker is run from each anchor forward or backward in the se-
quences, whichever direction yields the longest sub-sequence. For example, if
the anchor is placed before the middle of the sequence, the tracker is run for-
ward, otherwise backward in the sequence. Each anchor is manually checked and
potentially moved by a few frames to avoid placing the initialization point on
an occluded target. Figure 1 shows example of the anchor placement and the
tracking direction.

Anchor 1 Anchor 2 Anchor 3 Anchor 4

tracking direction

First frame Last frame

Fig. 1. Anchors are placed 50 frames apart. At each anchor the tracker is initialized
and tracks in the direction that yields the longest subsequence.

The distance between the anchors was set to ∆anc = 50. At approximately 25
frames per second, this amounts to 2 second distances. We have experimentally
tested that this value delivers stable results for the measures described in the
next section computed on typical-length short-term sequences, while keeping the
computational complexity of the evaluation at a moderate level.

Like in previous VOT challenges, we use the accuracy and robustness as the
basic measures to probe tracking performance and the overall performance is
summarized by the expected average overlap (EAO). In the following we re-
define these in the context of the new anchor-based evaluation protocol.

The new accuracy and robustness measures. On a subsequence starting
from an anchor a of sequence s, the accuracy As,a is defined as the average
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overlap between the target predictions and the ground truth calculated from the
frames before the tracker fails on that subsequence, i.e.,

As,a =
1

NF
s,a

∑
i=1:NF

s,a

Ωs,a(i), (1)

where NF
s,a is the number of frames before the tracker failed in the subsequence

starting at anchor a in the sequence s (see Section 2.1 for the failure definition)
and Ωs,a(i) is the overlap between the prediction and the ground truth at frame
i. The new robustness measure Rs,a is defined as the extent of the sub-sequence
before the tracking failure, i.e.,

Rs,a = NF
s,a/Ns,a, (2)

where Ns,a is the number of frames of the subsequence.
The results from the sub-sequences are averaged in a weighted fashion such

that each sub-sequence contributes proportionally to the number frames used
in calculation of each measure. In particular, the per-sequence accuracy and
robustness are defined as

As =
1∑

a=1:NA
s
NF
s,a

∑
a=1:NA

s

As,aN
F
s,a, (3)

Rs =
1∑

a=1:NA
s
Ns,a

∑
a=1:NA

s

Rs,aNs,a, (4)

where NA
s is the number of anchors in the sequence s. The overall accuracy and

robustness are calculated by averaging the per-sequence counterparts propor-
tionally to the number of frames used for their calculation, i.e.,

A =
1∑

s=1:N N
F
s

∑
s=1:N

AsN
F
s , (5)

R =
1∑

s=1:N Ns

∑
s=1:N

RsNs, (6)

where N is the number of sequences in the dataset, Ns is the number of frames
in sequence s and NF

s =
∑
a=1:NA

s
NF
s,a is the number of frames used to calculate

the accuracy in that sequence.

The new EAO measure. As in previous VOT challenges, the accuracy and
robustness are principally combined into a single performance score called the
expected average overlap (EAO). We use the same approach as in the previ-
ous VOT challenges, i.e., the expected average overlap curve is calculated and
averaged over an interval of typical short-term sequence lengths into the EAO
measure.

Note that the computation considers virtual sequences of overlaps generated
from the sub-sequence results. In particular, if a tracker failed on a sub-sequence
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(s, a), the overlap falls to zero at the failure frame, and the overlaps can be
extended to i-th frame by zeros, even if i exceeds the sub-sequence length. But if
the tracker did not fail, the overlaps cannot be extrapolated beyond the original
sub-sequence length.

The value of the EAO curve Φ̂i at sequence length i is thus defined as

Φ̂i =
1

|S(i)|
∑

s,a∈S(i)

Φs,a(i), (7)

where Φs,a(i) is the average overlap calculated between the first and i-th frame
of the extended sub-sequence starting at anchor a of sequence s, S(i) is the set
of the extended sub-sequences with length greater or equal to i and |S(i)| is the
number of these sub-sequences.

The EAO measure is then calculated by averaging the EAO curve from Nlo

to Nhi, i.e.,

EAO =
1

Nhi −Nlo

∑
i=Nlo:Nhi

Φ̂i. (8)

Similarly to VOT2015 [35], the interval bounds [Nlo, Nhi] were determined from
the mean ± one standard deviation of the anchor-generated sub-sequences.

Failure definition. The tracking failure event is also redefined to (i) reduce
the potential for the gaming, i.e., outputting the entire image as the prediction
to prevent failure detection during an uncertain tracking phase, and (ii) allow
for recovery from short-term tracking failures. A tentative failure is detected
when the overlap falls below a non-zero threshold θΦ. The non-zero threshold
punishes an actual drift from the target as well as speculation by outputting
a very large bounding box to prevent failure detection. If a tracker does not
recover within the next θN frames, i.e., the overlap does increase to over θΦ, a
failure is detected. Note that in some rare situations a frame might contain the
target fully occluded. Since short-term trackers are not required to report target
disappearance, these frames are ignored in tracking failure detection.

By using several well-known trackers from different tracker design classes
we experimentally determined that the threshold values θΦ = 0.1 and θN = 10
reduce the gaming potential, allow recoveries from short-term failures, while still
penalizing the trackers that fail more often.

Per-attribute analysis. Per-attribute accuracy and robustness are computed
by accounting for the fact that the attributes are not equally distributed among
the sequences and that the attribute at a frame may affect the tracker perfor-
mance a few frames later in the sequence. Thus the two per-attribute measures
(Aatr, Ratr) are defined as weighted per-sequence measures with weights propor-
tional to the amount of attribute in the sequence, i.e.,

Aatr =
1∑

s=1:N N
atr
s

∑
s=1:N

Natr
s As, (9)

Ratr =
1∑

s=1:N N
atr
s

∑
s=1:N

Natr
s Rs, (10)
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where Natr
s is the number of frames with attribute ”atr” in a sequence s.

2.2 The VOT long-term performance evaluation protocol

In a long-term (LT) tracking setup, the target may leave the camera field of view
for longer duration before re-entering it, or may undergo long-lasting complete
occlusions. The tracker is thus required to report the target position only for
frames in which the target is visible and is required to recover from tracking
failures. Long-term sequences are thus much longer than short-term sequences
to test the re-detection capability. LT measures should therefore measure the
target localization accuracy as well as target re-detection capability.

In contrast to the ST tracking setup, the tracker is not reset upon drifting
off the target. To account for the most general case, the tracker is required to
report the target position at every frame and provide a confidence score of target
presence. The evaluation protocol [49] first used in the VOT2018 is adapted.

Three long-term tracking performance measures proposed in [48] are adopted:
tracking precision (Pr), tracking recall (Re) and tracking F-score. These are
briefly described in the following.

The Pr and Re are derived in [48] from the counterparts in detection litera-
ture with important differences that draw on advancements of tracking-specific
performance measures. In particular, the bounding box overlap is integrated out,
leaving both measures Pr(τθ) and Re(τθ) depend directly on the tracker pre-
diction certainty threshold τθ, i.e., the value of tracking certainty below which
the tracker output is ignored. Precision and accuracy are combined into a single
score by computing the tracking F-measure

F (τθ) = 2Pr(τθ)Re(τθ)/(Pr(τθ) +Re(τθ)). (11)

Long-term tracking performance can thus be visualized by tracking precision,
tracking accuracy and tracking F-measure plots by computing these scores for
all thresholds τθ [48]. The final values of Pr, Re and F -measure are obtained by
selecting τθ that maximizes tracker-specific F -measure. This avoids all manually-
set thresholds in the primary performance measures.

Evaluation protocol. A tracker is evaluated on a dataset of several se-
quences by initializing on the first frame of a sequence and run until the end
of the sequence without re-sets. A precision-recall graph is calculated on each
sequence and averaged into a single plot. This guarantees that the result is not
dominated by extremely long sequences. The F-measure plot is computed ac-
cording to (11) from the average precision-recall plot. The maximal score on the
F-measure plot (tracking F-score) is taken as the long-term tracking primary
performance measure.

3 Description of individual challenges

In the following we provide descriptions of all five challenges running in the
VOT2020 challenge.
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3.1 VOT-ST2020 challenge outline

This challenge addressed RGB tracking in a short-term tracking setup. The per-
formance evaluation protocol and measures outlined in Section 2.1 were applied.
In the following, the details of the dataset and the winner identification protocols
are provided.

The dataset. Results of the VOT2019 showed that the dataset was not satu-
rated [31], and the public dataset has been refreshed by replacing one sequence
(see Figure 2.) A single sequence in the sequestered dataset has been replaced
as well to calibrate the attribute distribution between the two datasets. Follow-
ing the protocols from VOT2019, the list of 1000 diverse sequences55 from the
GOT-10k [25] training set was used. The sequence selection and replacement
procedure followed that of VOT2019. In addition, object category and motion
diversity was ensured by manual review.

Fig. 2. The pedestrian1 sequence of the VOT2019 public dataset has been replaced
by a more challenging hand02 sequence for VOT2020.

The bounding boxes are no longer used in the VOT-ST/RT tracking sub-
challenges. The target position is now encoded by the segmentation masks. Since
2016, VOT has already been using segmentation masks for fitting the rotated
bounding box ground truth in the previous years. However, a closer inspection
revealed that while these masks were valid for fitting rectangles, their accuracy
was insufficient for segmentation ground truth. Thus the entire dataset (pub-
lic and sequestered) was re-annotated. The initial masks were obtained by a
semi-automatic method and then all sequences were frame-by-frame manually
corrected. Examples of segmentation masks are shown in Figure 3.

Per-frame visual attributes were semi-automatically assigned to the new se-
quences following the VOT attribute annotation protocol. In particular, each
frame was annotated by the following visual attributes: (i) occlusion, (ii) illumi-
nation change, (iii) motion change, (iv) size change, (v) camera motion.

The EAO interval bounds in (8) were estimated to be [Nlo, Nhi] = [115, 755]
on the public VOT-ST2020 dataset.

55 http://www.votchallenge.net/vot2019/res/list0 prohibited 1000.txt
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Fig. 3. Images from the VOT-ST2020 sub-challenge with segmentation masks super-
imposed (in cyan).

Winner identification protocol. The VOT-ST2020 winner was identified
as follows. Trackers were ranked according to the EAO measure on the public
dataset. Top five ranked trackers were then re-run by the VOT2020 committee
on the sequestered dataset. The top ranked tracker on the sequestered dataset
not submitted by the VOT2020 committee members was the winner of the VOT-
ST2020 challenge.

3.2 VOT-RT2020 challenge outline

This challenge addressed real-time RGB tracking in a short-term tracking setup.
The dataset was the same as in the VOT-ST2020 challenge, but the evaluation
protocol was modified to emphasize the real-time component in tracking perfor-
mance. In particular, the VOT-RT2020 challenge requires predicting bounding
boxes faster or equal to the video frame-rate. The toolkit sends images to the
tracker via the Trax protocol [71] at 20fps. If the tracker does not respond in
time, the last reported bounding box is assumed as the reported tracker output
at the available frame (zero-order hold dynamic model). The same performance
evaluation protocol as in VOT-ST2020 is then applied.

Winner identification protocol. All trackers are ranked on the public RGB
short-term tracking dataset with respect to the EAO measure. The winner was
identified as the top ranked tracker not submitted by the VOT2020 committee
members.

3.3 VOT-LT2020 challenge outline

This challenge addressed RGB tracking in a long-term tracking setup and is a
continuation of the VOT-LT2019 challenge. We adopt the definitions from [48],
which are used to position the trackers on the short-term/long-term spectrum. A
long-term performance evaluation protocol and measures from Section 2.2 were
used to evaluate tracking performance on VOT-LT2020.

Trackers were evaluated on the LTB50 [49], the same dataset as used in VOT-
LT2019. The LTB50 dataset contains 50 challenging sequences of diverse objects
(persons, car, motorcycles, bicycles, boat, animals, etc.) with the total length of
215294 frames. Sequence resolutions range between 1280 × 720 and 290 × 217.
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Each sequence contains on average 10 long-term target disappearances, each
lasting on average 52 frames.

The targets are annotated by axis-aligned bounding boxes. Sequences are
annotated by the following visual attributes: (i) Full occlusion, (ii) Out-of-view,
(iii) Partial occlusion, (iv) Camera motion, (v) Fast motion, (vi) Scale change,
(vii) Aspect ratio change, (viii) Viewpoint change, (ix) Similar objects. Note this
is per-sequence, not per-frame annotation and a sequence can be annotated by
several attributes. Please see [49] for more details.

Winner identification protocol. The VOT-LT2020 winner was identified as
follows. Trackers were ranked according to the tracking F-score on the LTB50
dataset (no sequestered dataset available). The top ranked tracker on the dataset
not submitted by the VOT2020 committee members was the winner of the VOT-
LT2020 challenge.

3.4 VOT-RGBT2020 challenge outline

This challenge addressed short-term trackers using RGB and a thermal channel.
The performance evaluation protocol and measures outlined in Section 2.1 were
applied.

Trackers were evaluated on the VOT-RGBT2019 dataset, derived from [43],
but extended with anchor frames for the new re-initialization approach. The
VOT-RGBT2019 dataset contains 60 public and 60 sequestered sequences con-
taining partially aligned RGB and thermal images. The longest three sequences
in the sequestered dataset are among the simpler ones and were sub-sampled by
factor five to avoid a positive bias in the EAO measure. Due to acquisition equip-
ment, the RGB and thermal channels are slightly temporally de-synchronized,
which adds to the challenge in RGBT tracking. All frames are annotated with
the attributes (i) occlusion, (ii) dynamics change, (iii) motion change, (iv) size
change, and (v) camera motion. Due to the slight temporal de-synchronization
and the partially very small objects, the consistency and accuracy of segmenta-
tion masks was not sufficient for unbiased tracker evaluation. A decision was thus
made to use rotated bounding boxes already created for the VOT-RGBT2019
dataset instead. Examples of images from the dataset are shown in Figure 4.

Fig. 4. Example images from the VOT-RGBT2020 dataset. The left two frames illus-
trate the synchronization issue in the RGBT234 dataset [43] and the right two frames
the small object issue.
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Winner identification protocol. The VOT-RGBT2020 winner has been iden-
tified as follows. Trackers were ranked according to the EAO measure on the pub-
lic VOT-RGBT2020 dataset. The top five trackers have then been re-run by the
VOT2020 committee on the sequestered VOT-RGBT dataset. The top ranked
tracker on the sequestered dataset not submitted by the VOT2020 committee
members was the winner of the VOT-RGBT2020 challenge.

3.5 VOT-RGBD2020 challenge outline

This challenge addressed long-term trackers using the RGB and depth chan-
nels (RGBD). The long-term performance evaluation protocol from Section 2.2
was used. The VOT-RGBD2020 trackers were evaluated on the CDTB dataset
described in detail in [46]. The dataset contains 80 sequences acquired with
three different sensor configurations: 1) a single Kinect v2 RGBD sensor, 2) a
combination of the Time-of-Flight (Basler tof640) and RGB camera (Basler
acA1920), and 3) a stereo-pair (Basler acA1920). Kinect was used in 12 in-
door sequences, RGB-ToF pair in 58 indoor sequences and the stereo-pair in 10
outdoor sequences. The dataset contains tracking of various household and office
objects (Figure 5). The sequences contain target in-depth rotations, occlusions
and disappearance that are challenging for only RGB and depth-only trackers.
The total number of frames is 101,956 in various resolutions. For more details,
see [46].

Winner identification protocol. The VOT-RGBD2020 winner was identified
as follows. Trackers were ranked according to the F-score on the public VOT-
RGBD2020 dataset (no sequestered dataset available). The reported numbers
were computed using the submitted results, but the numbers were verified by
re-running the submitted trackers multiple times. The top ranked tracker not
submitted by the VOT2020 committee members was the winner of the VOT-
RGBD2020 challenge.

Fig. 5. RGB and depth (D) frames from the VOT-RGBD dataset.
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4 The VOT2020 challenge results

This section summarizes the trackers submitted, results analysis and winner
identification for each of the five VOT2020 challenges.

4.1 The VOT-ST2020 challenge results

Trackers submitted In all, 28 valid entries were submitted to the VOT-ST2020
challenge. Each submission included the binaries or source code that allowed
verification of the results if required. The VOT2020 committee and associates
additionally contributed 9 baseline trackers. For these, the default parameters
were selected, or, when not available, were set to reasonable values. Thus in total
37 trackers were tested on VOT-ST2020. In the following we briefly overview the
entries and provide the references to original papers in the Appendix A where
available.

Of all participating trackers, 17 trackers (46%) were categorized as ST0, 18
trackers (49%) as ST1 and 2 as LT0. 92% applied discriminative and 8% ap-
plied generative models. Most trackers (95%) used holistic model, while 5% of
the participating trackers used part-based models. Most trackers applied a lo-
cally uniform dynamic model56 or a random walk dynamic model (95%) and
only (5%) applied a nearly-constant-velocity dynamic model. 38% of trackers
localized the target in a single stage, while the rest applied several stages, typi-
cally involving approximate target localization and position refinement. Most of
the trackers (86%) use deep features, which shows that the field has moved away
from using hand-crafted features, which were still widely used on their own or in
combination with the deep features even a few years ago. 54% of these trackers
re-trained their backbone on tracking or segmentation/detection datasets.

A particular novelty of the VOT-ST2020 is that target location ground truth
is encoded as a segmentation mask. We observe a strong response in the VOT
community to this: 57% of trackers reported target position as a segmentation
mask, while the rest (43%) reported a bounding box. Among the segmenta-
tion trackers, 5 apply a deep grab-cut-like segmentation [79], 3 apply a nearest-
neighbor segmentation akin to [50] and 13 apply patch-based Siamese segmen-
tation akin to [74].

The trackers were based on various tracking principles. The two dominant
tracking methodologies are discriminative correlation filters57 (used in 68% of
all submissions) and Siamese correlation networks, e.g. [4,41,74], (used in 46%
of all submissions). 15 trackers were based only on DCFs (DET50 A.6, TRAST-
mask A.9, TRASFUSTm A.11, DPMT A.13, TRAT A.19, DiMP A.21, Su-
perDiMP A.22, LWTL A.23, TCLCF A.25, AFOD A.26, FSC2F A.27, KCF A.33,

56 The target was sought in a window centered at its estimated position in the previous
frame. This is the simplest dynamic model that assumes all positions within a search
region contain the target have equal prior probability.

57 This includes standard FFT-based as well as more recent deep learning based DCFs
(e.g., [13,5]).
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CSRpp A.31, ATOM A.30, UPDT A.37). 10 trackers were based only on Siamese
correlation networks (DCDA A.3, igs A.4, SiamMaskS A.5, VPUSiamM A.7,
Ocean A.10, Siammask A.14, SiamMargin A.17, SiamEM A.18, AFAT A.24,
SiamFc A.35). 6 trackers applied a combination of DCFs and Siamese networks
(A3CTDmask A.2, RPT A.8, AlphaRef A.12, OceanPlus A.15, fastOcean A.16,
DESTINE A.28), one tracker combined a DCF with nearest-neighbor deep fea-
ture segmentation D3S A.1. One tracker was based on generative adversarial
networks InfoVital A.20, one entry was a state-of-the-art video segmentation
method STM A.36, one entry was a subspace tracker (IVT A.32), one used
multiple-instance learning (MIL A.34) and one entry was a scale-adaptive mean-
shift tracker (ASMS A.29).

Results The results are summarized in the AR-raw plots and EAO plots in
Figure 6, and in Table 8. The top ten trackers according to the primary EAO
measure (Figure 6) are RPT A.8, OceanPlus A.15, AlphaRef A.12, AFOD A.26,
LWTL A.23, fastOcean A.16, TRASTmask A.9, DET50 A.6, D3S A.1 and
Ocean A.10. All of these trackers apply CNN features for target localization. Nine
(RPT, OceanPlus, AlphaRef, AFOD, LWTL, fastOcean, DET50, D3S, TRAST-
mask) apply a deep DCF akin to [13] (many of these in combination with a
Siamese correlation net – RPT, OceanPlus, AlphaRef), while Ocean applies a
Siamese correlation network without a DCF. All trackers provide the target loca-
tion in form of a segmentation mask. Most trackers localize the target in multiple
stages, except for AFOD, LWTL and D3S, which produce the target mask in a
single stage. Several methods apply deep DCFs such as ATOM/DiMP [13,5]
for target localization, bounding box estimation by region proposals [41] or
fully-convolutional [69,84], while the final segmentation draws on approaches
from [74,50,64]. A ResNet50 backbone pre-trained on general datasets is used in
all top 10 trackers.

The top performer on the public dataset is RPT A.8. This is a two-stage
tracker. The first stage combines the response of a fully-convolutional region pro-
posal RepPoints [84] with a deep DCF DimP [5] response for initial bounding box
estimation. In the second stage, a single-shot segmentation tracker D3S [50] is
applied on the estimated target bounding box to provide the final segmentation
mask. D3S appears to be modified by replacing the target presence map in geo-
metrically constrained model by the more robust output from the approximate
localization stage. This tracker significantly stands out from the rest according
to the EAO measure.

The second-best ranked tracker is OceanPlus A.15. This is a multi-stage
tracker based on Siamese region proposal nets SiamDW[91] (a top-performer
of several VOT2019 sub-challenges) that matches template features in three
parallel branches with various filter dilation levels. Fused outputs are used to
predict the target bonding box akin to Fcos [69] and DiMP [5] is applied for
increased robustness. Attention maps akin to TVOS [89] are computed and a
UNet-like architecture [61] is then applied to fuse it with the correlation features



The Eighth Visual Object Tracking VOT2020 Challenge Results 19

0.0 0.2 0.4 0.6 0.8 1.0
Robustness

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0 100 200 300 400 500 600 700
frames

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

ct
ed

 a
ve

ra
ge

 o
ve

rl
ap

05101520253035
0.0

0.1

0.2

0.3

0.4

0.5

0.6

EA
O

Fig. 6. The VOT-ST2020 AR-raw plots generated by sequence pooling (left) and EAO
curves (center) and the VOT-ST2020 expected average overlap graph with trackers
ranked from right to left. The right-most tracker is the top-performing according to
the VOT-ST2020 expected average overlap values. The dashed horizontal line denotes
the average performance of ten state-of-the-art trackers published in 2018 and 2019 at
major computer vision venues. These trackers are denoted by gray circle in the bottom
part of the graph.

into the final segmentation. The tracker shows a comparable robustness to the
top performer.

The third top-performing tracker is AlphaRef A.12. This is a two-stage
tracker that applies DiMP [5] to localize the target region. The region is then
passed to a refine network akin to the one used in [60] to merge pixel-wise cor-
relation and non-local layer outputs into the final segmentation mask.

The top-three trackers stand out from the rest in different performance mea-
sures. RPT and OceanPlus are much more robust than the other trackers, mean-
ing that they remain on the target for longer periods. Combined with their very
accurate target segmentation mask estimation, they achieve a top EAO. The
third tracker, AlphaRef, also obtains a very high EAO, but not due to robust-
ness – its robustness is actually lower than a lower-ranked fastOcean. The very
high EAO can be attributed to the high accuracy. This tracker achieves a re-
markable 0.753 localization accuracy, meaning that the segmentation masks are
of much higher quality than the competing trackers whenever the target is well
localized. From the submitted tracker descriptions, we can speculate that all
three trackers with top accuracy (AlphaRef, AFOD and LWTL) apply similar
approaches for segmentation. This comes at a cost of a reduced robustness of
several percentage points compared to the two top EAO performers.

Since the VOT-ST2020 challenge has shifted toward target localization by
segmentation, the VOT committee added a recent state-of-the-art video object
segmentation (VOS) method STM A.36 [56] (2019) as a strong VOS baseline.
Small modifications were made like rescaling the input to a fixed resolution to
allow running on longer sequences with smaller targets than those typical for
VOS challenge. Interstingly STM is ranked 19th, outperforming state-of-the-art
bounding-box-based trackers such as ATOM [13] and DiMP [5]. In fact, STM
achieves a second-best segmentation accuracy among all submissions and runs
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with decent robustness – for example, it outperforms an improved bounding-box
tracker SuperDiMP. These results show a great tracking potential for the video
object segmentation methods.

The trackers which have been considered as baselines or state-of-the-art a few
years ago (e.g., SiamFc, KCF, IVT, CSRpp, ASMS) are positioned at the lower
part of the AR-plots and at the tail of the EAO rank list, and even some of the
recent state-of-the-art like ATOM [13] and DiMP [5] are ranked in the lower third
of the submissions. This is a strong indicator of the advancements made in the
field. Note that 6 of the tested trackers have been published in major computer
vision conferences and journals in the last two years (2019/2020). These trackers
are indicated in Figure 6, along with their average performance (EAO= 0.3173),
which constitutes the VOT2020 state-of-the-art bound. Approximately 46% of
submitted trackers exceed this bound, which speaks of significant pace of ad-
vancements made in tracking within a span of only a few years.

CM IC OC SC MC

Accuracy 0.53 3 0.54 0.45 1 0.54 0.51 2

Robustness 0.70 0.77 0.60 1 0.69 0.63 2

Table 1. VOT-ST2020 tracking difficulty with respect to the following visual at-
tributes: camera motion (CM), illumination change (IC), motion change (MC), oc-
clusion (OC) and size change (SC).

The per-attribute robustness analysis is shown in Figure 7 for individual
trackers. The overall top performers remain at the top of per-attribute ranks as
well. None of the trackers consistently outperforms all others on all attributes,
but RPT is consistently among the top two trackers. According to the median
failure over each attribute (Table 1) the most challenging attributes remain
occlusion and motion change as in VOT2019. The drop on these two attributes
is consistent for all trackers (Figure 7). Illumination change, motion change and
scale change are challenging, but comparatively much better addressed by the
submitted trackers.

The VOT-ST2020 challenge winner Top five trackers from the baseline ex-
periment (Table 8) were re-run on the sequestered dataset. Their scores obtained
on sequestered dataset are shown in Table 2. The top tracker according to the
EAO is RPT A.8 and is thus the VOT-ST2020 challenge winner.

4.2 The VOT-RT2020 challenge results

Trackers submitted The trackers that entered the VOT-ST2020 challenge
were also run on the VOT-RT2019 challenge. Thus the statistics of submitted
trackers was the same as in VOT-ST2020. For details please see Section 4.1 and
Appendix A.
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Fig. 7. Robustness with respect to the visual attributes.

Tracker EAO A R

1. RPT 0.547 1 0.766 0.850
2. AFOD 0.536 2 0.795 0.816
3. LWTL 0.526 3 0.781 0.822
4. OceanPlus 0.513 0.760 0.818
5. AlphaRef 0.510 0.823 0.762

Table 2. The top five trackers from Table 8 re-ranked on the VOT-ST2020 sequestered
dataset.

Results The EAO scores and AR-raw plots for the real-time experiments are
shown in Figure 8 and Table 8. The top ten real-time trackers are AlphaRef A.12,
OceanPlus A.15, AFOD A.26, fastOcean A.16, Ocean A.10, D3S A.1, AFAT A.24,
SiamMargin A.17, LWTL A.23 and TRASTmask A.9.
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Fig. 8. The VOT-RT2020 AR plot (left), the EAO curves (center) and the EAO plot
(right).

The top three trackers, AlphaRef, OceanPlus and AFOD are ranked 3rd,
2nd and 4th on the VOT-ST2020 challenge, respectively. These, in addition to
fastOcean stand out from the rest in EAO, owing this to an excellent robust-
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ness. AlphaRef has slightly lower robustness than OceanPlus, but a much better
accuracy, which results in a higher EAO.

Astonishingly, 8 out of 10 top real-time trackers are among the top ten per-
formers on VOT-ST challenge. This is in stark contrast to the previous years,
where most of the top performers from VOT-ST challenge substantially dropped
in ranks under the realtime constraint. The two additional trackers among to 10
are SiamMargin and TRASTmask. SiamMargin is the VOT-RT2019 challenge
winner based on SiamRPN++[41], while TRASTmask is a teacher-student net-
work that uses DiMP [5] for the teacher for bounding box prediction. Both
trackers apply SiamMask [74] for final segmentation.

Seven trackers (AlphaRef, OceanPlus, AFOD, fastOcean, Ocean, D3S and
AFAT) outperform the VOT-RT2019 winner SiamMargin, which shows that
the real-time performance bar has been substantially pushed forward this year.
The tracking speed obviously depends on the hardware used, but overall, we
see emergence of deep tracking architectures that no longer sacrifice speed and
computational efficiency for performance (or vice versa).

Like in VOT-ST2020 challenge, 6 of the tested trackers have been pub-
lished in major computer vision conferences and journals in the last two years
(2019/2020). These trackers are indicated in Figure 8, along with their average
performance (EAO= 0.2932), which constitutes the VOT2020 realtime state-
of-the-art bound. Approximately 32% of submitted trackers exceed this bound,
which is slightly lower than in the VOT-ST2020 challenge.

The VOT-RT2020 challenge winner According to the EAO results in Ta-
ble 8, the top performer and the winner of the real-time tracking challenge
VOT-RT2020 is AlphaRef (A.12).

4.3 The VOT-LT2020 challenge results

Trackers submitted The VOT-LT2020 challenge received 5 valid entries. The
VOT2020 committee contributed additional three top performers from VOT-
LT2019 as baselines, thus 8 trackers were considered in the challenge. In the
following we briefly overview the entries and provide the references to original
papers in Appendix B where available.

All participating trackers were categorized as LT1 according to the ST-LT
taxonomy from Section 1.3 in that they implemented explicit target re-detection.
All methods are based on convolutional neural networks. Several methods are
based on region proposal networks akin to [41] for approximate target local-
ization at detection stage (Megtrack B.1, SPLT B.2, LTDSE B.7) and several
approaches apply the MDNet classifier [55] for target presence verification (LT-
MUB B.3, ltMDNet B.5, CLGS B.6). One tracker is based purely on a deep
DCF and applies the DCF for localization as well as for the detection mod-
ule (RLTDiMP B.4) and one tracker applies an ensamble for improved robust-
ness and accuracy (SiamDWLT B.8). Four trackers update their short-term and
long-term visual models only when confident (Megtrack, LTMUB, RLTDiMP,
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LTDSE), while SPLT never updates the visual models, LTMDNet updates the
short-term visual model at fixed intervals, but keeps the long-term model fixed,
CLGS never updates the short-term model and updates the long-term model
at fixed intervals, and SiamDWLT applies PN learning to update both visual
models.

Tracker Pr Re F-Score

LT DSE 0.715 2 0.677 3 0.695 1

LTMU B 0.701 0.681 2 0.691 2

Megtrack 0.703 3 0.671 0.687 3

CLGS 0.739 1 0.619 0.674

RLT DiMP 0.657 0.684 1 0.670

SiamDW LT 0.678 0.635 0.656

ltMDNet 0.649 0.514 0.574

SPLT 0.587 0.544 0.565
Table 3. List of trackers that participated in the VOT-LT2020 challenge along with
their performance scores (Pr, Re, F-score) and ST/LT categorization.

Results The overall performance is summarized in Figure 9 and Table 3. The
top-three performers are LTDSE B.7, LTMUB B.3 and Megtrack B.1. LTDSE is
the winner of the VOT-LT2019 challenge as was included by the VOT2020 com-
mittee as a strong baseline. This tracker applies a DCF [13] short-term tracker
on top of extended ResNet18 features for initial target localization. The target
position is refined by a SiamMask [74] run on the target initial position. The tar-
get presence is then verified by RT-MDNet [29]. If the target is deemed absent,
an image-wide re-detection using a region proposal network akin to MBMD [90]
is applied. The region proposals are verified by the online trained verifier.

LTMUB architecture is composed of a local tracker, verifier, global detector
and meta-updater. Similarly to LTSDE, the short-term tracker is a combina-
tion of DiMP [5] and SiamMask [74]. Adaptation of the MDNet [55] is used
for a verifier, an LSTM-absed meta updater from [11] to decide whether to up-
date and [26] is used for image-wide re-detection. According to the authors, the
method can be thought of as a simplified version of LTDSE.

Megtrack architecture applies a short-term tracker composed of ATOM [13]
and SiamMask [74] for inter-frame target localization and presence verification.
Target re-detection is performed by GlobalTrack [26] within a gradually increas-
ing search region and verified using a combination of online-learned real-time
MDNet [29] and offline-learned one-shot matching module. Short-term tracker
is re-initialized on the re-detected target.

LTDSE achieves an overall best F-measure and slightly surpasses LTMUB
(by 0.6%). LTDSE has a better precision, meaning that its target detections
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Fig. 9. VOT-LT2020 challenge average tracking precision-recall curves (left), the cor-
responding F-score curves (right). Tracker labels are sorted according to maximum of
the F-score.

more reliably contain the target. On the other hand, LTMUB recovers more
target positions, but at a cost of a reduced precision.

Figure 10 shows tracking performance with respect to nine visual attributes
from Section 3.3. The most challenging attributes are fast motion, partial and
full occlusion and target leaving the field of view (out-of-view attribute).
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Fig. 10. VOT-LT2020 challenge maximum F-score averaged over overlap thresholds
for the visual attributes. The most challenging attributes are partial and full occlusion
and out-of-view.

The VOT-LT2020 challenge winner According to the F-score, the top-
performing tracker is LTDSE, closely followed by LTMUB. LTDSE was provided
by the VOT committee as a baseline tracker and as such does not compete for
the winner of the VOT-LT2020. Thus the winner of the VOT-LT2020 challenge
is LTMUB B.3.



The Eighth Visual Object Tracking VOT2020 Challenge Results 25

4.4 The VOT-RGBT2020 challenge results

Trackers submitted In all, 5 entries were submitted to the VOT-RGBT2020
challenge. All submissions included the source code that allowed verification of
the results if required. Two additional trackers were contributed by the VOT
committee: mfDiMP C.6 [87] and SiamDW-T C.7. Thus in total 7 trackers were
compared on VOT-RGBT2020. In what follows we briefly overview the entries
and provide the references to original papers in the Appendix C where available.

All five submitted trackers use discriminative models with a holistic repre-
sentation. 2 trackers (40%) were categorized as ST1 and 3 trackers (60%) as ST0.
All 5 trackers applied a locally uniform dynamic model.

The trackers were based on various tracking principles: 4 trackers (80%) are
single-stage trackers based on discriminative correlation filters (M2C2Frgbt C.1,
JMMAC C.2, AMF C.3, and SNDCFT C.4) and 1 tracker (20%) is a multi-stage
tracker based on a Siamese network (DFAT C.5). Respectively 1 tracker (20%)
makes use of subspace methods (M2C2Frgbt C.1) and RANSAC (JMMAC C.2).
Most of the trackers (80%) use deep features, only M2C2Frgbt C.1 uses hand-
crafted features. Except for JMMAC C.2 and SNDCFT C.4, all deep-feature-
based trackers train their backbones.

Results The results are summarized in the AR-raw plots, EAO curves, and
the expected average overlap plots in Figure 11. The values are also reported in
Table 4.
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Fig. 11. The VOT-RGBT2020 AR plot (left), the EAO curves (center), and the EAO
plot (right). The legend is given in Table 4.

The top performer on the public dataset is JMMAC C.2 with an EAO score
of 0.420. This tracker thus repeats its top rank on the public dataset from 2019,
even though it does not perform backbone training.

The second-best ranked tracker is AMF C.3 with an EAO score of 0.412. It
follows the standard recipe of singe-stage discriminative correlation filter applied
to deep features with backbone training.

The third top-performing position is taken by DFAT C.5, the only Siamese-
network-based tacker among the submissions, with an EAO score of 0.390.
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Tracker EAO A R

JMMAC 0.420 1 0.662 2 0.818 2

AMF 0.412 2 0.630 0.822 1

DFAT 0.390 3 0.672 1 0.779

SiamDW-T 0.389 0.654 3 0.791

mfDiMP 0.380 0.638 0.793 3

SNDCFT 0.378 0.630 0.789

M2C2Frgbt 0.332 0.636 0.722
Table 4. The ranking of the five submitted trackers and the two top-ranked trackers
from VOT-RGBT2019 on the VOT-RGBT2020 public dataset.

Since this has been the second RGBT-challenge within VOT, we can compare
the newly submitted trackers to top-performing trackers from 2019: JMMAC C.2
(also submitted 2020), SiamDW-T C.7, and mfDiMP C.6. In comparison to these
three trackers, only AMF C.3 and DFAT C.5 beat previous top-performers. Note
that EAO scores from 2019 and 2020 differ due to the different restart policies.
Note further that the number of trackers from 2019 is too small to introduce a
state-of-the-art bound as for the VOT-ST challenge.
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Fig. 12. Failure rate with respect to the visual attributes. The legend is given in
Table 4.

However, similar to VOT-ST, we analyzed the number of failures with respect
to the visual attributes (replacing illumination change with dyunamics change),
see Figure 12. The overall top performers remain at the top of per-attribute ranks
as well, with the only exception that JMMAC shows degraded performance for
dynamics changes. SiamDW-T and mfDiMP perform comparably weak if no
degradation is present. The most challenging attributes in terms of failures are
occlusion and motion change. Dynamics change is the least challenging attribute.

The VOT-RGBT2020 challenge winner The top five trackers (besides 2019
top-performers AMF C.3 and DFAT C.5) were re-run on the sequestered dataset
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and their scores are shown in Table 5. Interestingly, the order of trackers has
changed significantly. Looking at the individual scores, it becomes evident that
the trackers submitted by the committee, SiamDW-T C.7 and mfDiMP C.6,
were the only trackers with better EAO-score on the sequestered dataset than
on the public dataset. The top tracker according to the EAO that has not been
submitted by the committee is DFAT C.5, which achieved basically the same
EAO-score on both datasets, and is thus the VOT-RGBT2020 challenge winner.

Tracker EAO A R

1. SiamDW-T 0.403 1 0.664 1 0.702 3

2. mfDiMP 0.402 2 0.623 3 0.734 1

3. DFAT 0.385 3 0.654 2 0.674
4. AMF 0.373 0.590 0.705 2

5. JMMAC 0.158 0.576 0.287
Table 5. The top five trackers from Table 4 re-ranked on the VOT-RGBT2020 se-
questered dataset.

4.5 The VOT-RGBD2020 challenge results

Trackers submitted The VOT-RGBD2020 challenge received 4 valid entries:
ATCAIS (D.1), DDiMP (D.2), CLGS D (D.3) and Siam LTD (D.4). We also
included the best and the third best tracker from the previous year (VOT-
RGBD2019): SiamDW D and LTDSEd. The previous version of ATCAIS was
submitted in 2019 as well and obtained the second best F-score (0.676). In ad-
dition, to study the performance gap between the best RGB and RGBD track-
ers the best performing RGB trackers from the VOT-LT2020 and VOT-ST2020
challenges were included: LTMU B, Megtrack, RLT DiMP, RPT, OceanPlus and
AlphaRef. In total, 12 trackers were considered for the challenge. In the following
we briefly overview the entries.

ATCAIS is based on the ATOM tracker [13] and HTC instance segmenta-
tion [9]. In ATCAIS the depth channel is used to detect occlusion and disappear-
ance and in target re-detection. DDiMP is an extension of the original DiMP
RGB tracker. DDiMP uses better features from ResNet50 and depth informa-
tion is used to robustify scale changes during tracking. CLGS D tracker utilizes
a set of deep architectures (SiamMask, FlowNetV2, CenterNet and MDNet) and
uses the optical flow (FlowNet) and depth maps to filter the region proposals
for target re-detection. Similar to the other RGBD trackers Siam LTD is based
on deep architectures, but it is unclear how the depth information is integrated
to the processing pipeline.

The SoTA RGB trackers are explained in more details in Section 4.3 and
the two RGB-D trackers from the previous year can be found in the VOT2019
report [31].
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Tracker Pr Re F-Score ST/LT RGB/RGBD

ATCAIS 0.709 2 0.696 1 0.702 1 LT RGBD

DDiMP 0.703 3 0.689 2 0.696 2 ST RGBD

CLGS D 0.725 1 0.664 0.693 3 LT RGBD

SiamDW D 0.677 0.685 3 0.681 LT RGBD

LTDSEd 0.674 0.643 0.658 LT RGBD

RLT DiMP 0.625 0.632 0.629 LT RGB

LTMU B 0.680 0.581 0.626 LT RGB

Megtrack 0.694 0.551 0.614 LT RGB

RPT 0.601 0.546 0.572 ST RGB

Siam LTD 0.626 0.489 0.549 LT RGBD

OceanPlus 0.577 0.502 0.537 ST RGB

AlphaRef 0.491 0.547 0.518 ST RGB
Table 6. List of trackers that participated in the VOT-RGBD2020 challenge along with
their performance scores (Pr, Re, F-score) and categorizations (ST/LT, RGB/RGBD).
2020 submissions are ATCAIS, DDiMP, CLGS D and Siam LTD. SiamDW D and
LTDSEd are 2019 submissions (SiamDW D was the winner). RGB trackers are the
three top performers of VOT-ST2020 and VOT-LT2020.

Results The overall performances are summarized in Figure 13 and Table 6.
ATCAIS obtains the highest F-score in 2020 while it obtained the second best in
2019. The improvement on the same data is from 0.676 (F-score) to 0.702 while
the last year winner (SiamDW D) obtains 0.681. All the results are based on
the submitted numbers, but these were verified by running the codes multiple
times.

The three best RGBD trackers, ATCAIS, DDiMP and CLGS D, provide
better results than the last year winner, SiamDW D, but the improvement of
the best (ATCAIS) is only 3%. Moreover, the Precision, Recall and F-score
values of the three best trackers are within 1.2% (F-score) to 4.5% (Recall)
and the numbers are similar to VOT-LT2020 challenge which indicate that the
results are saturating and a new dataset is needed to make the RGBD data more
challenging.

ATCAIS is the best performer in 8 out of the 14 attribute categories (Fig-
ure 14). It is noteworthy that in 2019 competition ATCAIS performance was par-
ticularly poor on full occlusion and out-of-frame categories, on which ATCAIS
substantially improved this year. The second best RGBD tracker DDiMP has
very similar per category performance to ATCAIS and DDiMP obtains better
performance on deformable, full occlusion. occlusion, out-of-frame, and similar
objects categories. On the other hand, the performance of the RLT DiMP RGB
tracker is moderately good across all attribute categories despite of not using
the depth channel at all.

The VOT-RGBD2020 challenge winner It should be noted that there are
only minor differences among the four best RGBD trackers and the last year
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Fig. 13. VOT-RGBD2020 challenge average tracking precision-recall curves (left), the
corresponding F-score curves (right). The tracker labels are sorted according to the
maximum of the F-score.

winner, SiamDW D, is among them. They all achieve the maximum F-measure
near the same Precision-Recall region (Figure 13) and differences between their
Recall, Precision and F-score values are from 1% to 4%. The five best trackers
are RGBD trackers which indicates the importance of the depth cue.

The winner is selected based on the best F-score and is ATCAIS (F-score
0.702). For the winning F-score ATCAIS also obtains the best recall (0.696) and
the second best precision (0.709). ATCAIS also obtains the best performance on
7 out of 13 assigned attributes for all sequences (inc. ”unassigned”). According
to the VOT winner rules, the VOT-RGBD2020 challenge winner is therefore
ATCAIS (D.1).

5 Conclusion

Results of the VOT2020 challenge were presented. The challenge is composed of
the following five challenges focusing on various tracking aspects and domains:
(i) the VOT2020 short-term RGB tracking challenge (VOT-ST2020), (ii) the
VOT2020 short-term real-time RGB tracking challenge (VOT-RT2020), (iii) the
VOT2020 long-term RGB tracking challenge (VOT-LT2020), (iv) the VOT2020
short-term RGB and thermal tracking challenge (VOT-RGBT2020) and (v) the
VOT2020 long-term RGB and depth (D) tracking challenge (VOT-RGBD2020).

Several novelties were introduced in the VOT2020 challenge. A new VOT
short-term performance evaluation methodology was introduced. The new method-
ology is an extension of the VOT2019 methodology that avoids tracker-dependent
re-starts and addresses short-term failures. Another important novelty is tran-
sition from bounding boxes to segmentation masks in the VOT-ST challenge.
Both, the VOT-ST public and sequestered dataset were refreshed and the tar-
gets were manually segmented in each frame.
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Fig. 14. VOT-RGBD2020 challenge: tracking performance w.r.t. visual attributes.

A major technical novelty is transition to a new Python toolkit that imple-
ments the VOT2020 challenges and the new performance evaluation protocols.
This toolkit will be extended to support VOT2019 challenges in near future,
after which the previous Matlab-based toolkits will be made obsolete and only
the VOT Python toolkit will be maintained.

The overall results of the VOT-ST2020 challenges show that the majority
of tested trackers apply either deep discriminative correlation filters or Siamese
networks. Majority of trackers report a segmentation mask, including the top
performers. Interestingly, results show that video-object-segmentation state-of-
the-art method STM [56] obtained competitive performance and outperformed
several state-of-the-art bounding box trackers. Another observation is that, 8
out of 10 top real-time trackers (VOT-RT2020 challenge) are among the top
ten performers on the VOT-ST2020, which shows emergence of deep learning
architectures that no longer sacrifice the speed for tracking accuracy (assuming
a sufficiently powerful GPU is available). As in VOT2019 short-term challenges,
the most difficult attributes remain occlusion and motion change.

The VOT-LT2020 challenge top performers apply short-term localization and
long-term re-detection tracker structure. Similarly to VOT2019, the dominant
methodologies are deep DCFs [13,5] and Siamese correlation [4], region proposals
and online trained CNN classifiers [55].

The participating trackers of the VOT-RGBT2020 challenge did not go signif-
icantly beyond the top-performers from VOT-RGBT2019. It was even observed
that some of the participating trackers over-fitted to the public dataset such
that the two top-ranked trackers from the VOT-RGBT2019 sequestered dataset
are still top ranked in 2020. Notably, Siamese network approaches seem to have
bypassed DCF-based trackers now, even though with a small margin.

All trackers submitted to the VOT-RGBD2020 challenge are based on the
SoTA deep RGB trackers. Depth information is used to improve occlusion de-
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VOT-ST2020 VOT-RT2020 Unsupervised

Tracker EAO A R EAO A R AO

RPT 0.530 1 0.700 0.869 1 0.290 0.587 0.614 0.632 1

OceanPlus 0.491 2 0.685 0.842 2 0.471 2 0.679 0.824 1 0.575 3

AlphaRef 0.482 3 0.754 1 0.777 0.486 1 0.754 1 0.788 3 0.590 2

AFOD 0.472 0.713 0.795 0.458 3 0.708 2 0.780 0.539

LWTL 0.463 0.719 3 0.798 0.337 0.619 0.720 0.570

fastOcean 0.461 0.693 0.803 3 0.452 0.691 0.792 2 0.566

DET50 0.441 0.679 0.787 0.189 0.633 0.401 0.524

D3S 0.439 0.699 0.769 0.416 0.693 0.748 0.508

Ocean 0.430 0.693 0.754 0.419 0.695 0.741 0.533

TRASFUSTm 0.424 0.696 0.745 0.282 0.576 0.616 0.524

DESTINE 0.396 0.657 0.745 0.278 0.552 0.638 0.463

AFAT 0.378 0.693 0.678 0.372 0.687 0.676 0.502

TRASTmask 0.370 0.684 0.677 0.321 0.628 0.643 0.494

SiamMargin 0.356 0.698 0.640 0.355 0.698 3 0.640 0.465

SiamMask S 0.334 0.671 0.621 0.312 0.651 0.604 0.449

VPU SiamM 0.323 0.652 0.609 0.280 0.613 0.555 0.405

siammask 0.321 0.624 0.648 0.320 0.624 0.645 0.405

SiamEM 0.310 0.520 0.743 0.187 0.438 0.491 0.418

STM 0.308 0.751 2 0.574 0.282 0.694 0.559 0.445

SuperDiMP 0.305 0.477 0.786 0.289 0.472 0.767 0.417

DPMT 0.303 0.492 0.745 0.293 0.487 0.730 0.383

A3CTDmask 0.286 0.673 0.537 0.260 0.634 0.498 0.371

TRAT 0.280 0.464 0.744 0.256 0.445 0.724 0.367

UPDT 0.278 0.465 0.755 0.237 0.443 0.688 0.374

DiMP 0.274 0.457 0.740 0.241 0.434 0.700 0.367

ATOM 0.271 0.462 0.734 0.237 0.440 0.687 0.378

DCDA 0.236 0.456 0.635 0.232 0.456 0.624 0.315

igs 0.222 0.421 0.643 0.221 0.421 0.643 0.286

TCLCF 0.202 0.430 0.582 0.202 0.430 0.582 0.216

FSC2F 0.199 0.416 0.581 0.156 0.397 0.456 0.269

asms 0.197 0.419 0.565 0.197 0.419 0.565 0.256

CSR-DCF 0.193 0.406 0.582 0.193 0.405 0.580 0.242

SiamFC 0.179 0.418 0.502 0.172 0.422 0.479 0.229

InfoVital 0.175 0.401 0.562 0.058 0.326 0.163 0.239

KCF 0.154 0.407 0.432 0.154 0.406 0.434 0.178

MIL 0.113 0.367 0.322 0.104 0.366 0.276 0.146

IVT 0.092 0.345 0.244 0.089 0.349 0.229 0.096

Table 8. Results for VOT-ST2020 and VOT-RT2020 challenges. Expected average
overlap (EAO), accuracy and robustness are shown. For reference, a no-reset average
overlap AO [76] is shown under Unsupervised.
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tection and target re-detection. The five best RGBD trackers (three of them
submitted 2020 and two 2019) are better than the best RGB-only tracker with a
clear margin. The results indicate that the depth provides complementary infor-
mation for visual object tracking and therefore more research and new datasets
are expected for RGBD tracking.

The top performer on the VOT-ST2020 public dataset is RPT A.8. This is a
two-stage tracker that integrates a state-of-the-art region proposal network [84]
with a state-of-the-art segmentation tracker [50]. On the public set, this tracker
obtains a significantly better performance than the second-best tracker. RPT is
also the top tracker on the sequestered dataset, on which the performance differ-
ence to the second-best is still large, albeit reduced compared to the difference
observed on the public set. RPT A.8 is thus a clear winner of the VOT-ST2020
challenge.

The top performer and the winner of the VOT-RT2020 challenge is Al-
phaRef A.12. This is a two-stage tracker that applies DiMP [5] to localize the
target region and refines it with a network akin to [60] to merge pixel-wise corre-
lation and non-local layer outputs into the final segmentation mask. This tracker
is also ranked quite high (3rd) on the public VOT-ST2020 challenge.

The top performer of the VOT-LT2020 challenge is LTDSE B.7, wich com-
bines a CNN-based DCF [13] with a Siamese segmentation tracker [74] and an
fast version of an online trained CNN classifier [55]. This tracker is also the VOT-
LT2019 challenge winner, which was included by the VOT2020 committee as a
strong baseline. The top submitted tracker and the winner of the VOT-LT2020
challenge, is LTMUB, which, accroding to the authors, can be considered as a
simplified version of the LTDSE.

The top performer on the VOT-RGBT2020 public dataset is JMMAC (C.2),
an approach that combines DCF-based tracking with RANSAC. The top-ranked
participating tracker on the sequestered dataset and the VOT-RGBT2020 chal-
lenge winner is DFAT (C.5), the only Siamese-network-based participating tracker.

The top performer and the winner of the VOT-RGBD2020 challenge is AT-
CAIS (D.1) that improved its rank from the last year second place to this year
first place. ATCAIS is based on the ATOM tracker [13] and HTC instance seg-
mentation [9]. The depth value is used to detect the target occlusion or dis-
appearance and re-find the target. For the winning F-score (0.702), ATCAIS
obtains the best performance on 8 out of 14 attributes.

The VOT primary objective is to establish a platform for discussion of
tracking performance evaluation and contributing to the tracking community
with verified annotated datasets, performance measures and evaluation toolkits.
The VOT2020 was the eighth effort toward this, following the very successful
VOT2013, VOT2014, VOT2015, VOT2016, VOT2017, VOT2018 and VOT2019.

This VOT edition started a transition to a fully segmented ground truth.
We believe this will boost the research in tracking, which will result in a class
of robust trackers with per-pixel target localization. In future editions we ex-
pect more sub-challenges to follow this direction, depending on man-power, as
producing high-quality segmentation ground truth requires substantial efforts.
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A new Python toolkit that implements the new evaluation protocols follows the
trend of majority of trackers transiting to Python as the main programming
language. Our future work will follow these lines of advancements.
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supported by the Czech Science Foundation Project GACR P103/12/G084. Aleš
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A VOT-ST2020 and VOT-RT2020 submissions

This appendix provides a short summary of trackers considered in the VOT-
ST2020 and VOT-RT2020 challenges.

A.1 Discriminative Sing-Shot Segmentation Tracker (D3S)

A. Lukezic
alan.lukezic@fri.uni-lj.si

Template-based discriminative trackers are currently the dominant tracking
paradigm due to their robustness, but are restricted to bounding box tracking
and a limited range of transformation models, which reduces their localization
accuracy. We propose a discriminative single-shot segmentation tracker named
D3S [50], which narrows the gap between visual object tracking and video object
segmentation. A single-shot network applies two target models with complemen-
tary geometric properties, one invariant to a broad range of transformations,
including non-rigid deformations, the other assuming a rigid object to simulta-
neously achieve high robustness and online target segmentation.

A.2 Visual Tracking by means of Deep Reinforcement Learning and
an Expert Demonstrator (A3CTDmask)

M. Dunnhofer, G. Foresti, C. Micheloni
{matteo.dunnhofer, gianluca.foresti, christian.micheloni}@uniud.it

A3CTDmask is the combination of the A3CTD tracker [16] with a one-shot
segmentation method for target object mask generation. A3CTD is a real-time
tracker built on a deep recurrent regression network architecture trained offline
using a reinforcement learning based framework. After training, the proposed
tracker is capable of producing bounding box estimates through the learned
policy or by exploiting the demonstrator. A3CTDmask exploits SiamMask [74]
by reinterpreting it as a one-shot segmentation module. The target object mask
is generated inside a frame patch obtained through the bounding box estimates
given by A3CTD.

A.3 Deep Convolutional Descriptor Aggregation for Visual
Tracking (DCDA)

Y. Li, X. Ke
liyuezhou.cm@gmail.com, kex@fzu.edu.cn

This work aims to mine the target representation capability of pre-trained
VGG16 model for visual tracking. Based on spatial and semantic priors, a central
attention mask is designed for robust-aware feature aggregation, and an edge
attention mask is used for accuracy aware feature aggregation. To make full
use of the scene context, a regression loss is developed to learn a discriminative
feature for complex scenes. DCDA tracker is implemented based on the Siamese
network, with a feature fusion and template enhancement strategies.
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A.4 IOU guided Siamese networks for visual object tracking (igs)

M. Dasari, R. Gorthi
{ee18d001, rkg}@iittp.ac.in

In the proposed IOU-SiamTrack framework, a new block called ’IOU mod-
ule’ is introduced. This module accepts the above feature domain response maps,
convert them into image domain with the help of anchor boxes, as is done in the
inference stage in [42,41]. Using the classification response map, top-K ’probable’
bounding boxes, having top-K responses are selected. IOU module then calcu-
lates the IOU of probable bounding boxes w.r.t. estimated bounding box and
produce the one with maximum IOU score as predicted output bounding box.
Through training progress, predicted box is more aligned with ground truth, as
network is guided to minimise the IOU loss.

A.5 SiamMask SOLO (SiamMask S)

Y. Jiang, Z. Feng, T. Xu, X. Song
yj.jiang@stu.jiangnan.edu.cn, {z.feng, tianyang.xu}@surrey.ac.uk,
x.song@jiangnan.edu.cn

The SiamMask SOLO tracker is based on the SiamMask algorithm. It uti-
lizes a multi-layer aggregation module to make full use of different levels of deep
CNN features. Besides, to balance all the three branches, the mask branch is re-
placed by a SOLO [75] head that uses CoordConv and FCN, which improves the
performance of the proposed SiamMask SOLO tracker in terms of both accuracy
and robustness. The original refined module is kept for a further performance
boost.

A.6 Diverse Ensemble Tracker (DET50)

N. Wang, W. Zhou, H. Li
wn6149@mail.ustc.edu.cn, {zhwg, lihq}@ustc.edu.cn

In this work, we leverage an ensemble of diverse models to learn manifold rep-
resentations for robust object tracking. Based on the DiMP method, a shared
backbone network (ResNet-50) is applied for feature extraction and multiple
head networks for independent predictions. To shrink the representational over-
laps among multiple models, both model diversity and response diversity regu-
larization terms are used during training. This ensemble framework is end-to-end
trained in a data-driven manner. After box-level prediction, we use SiamMask
for mask generation.

A.7 VPU SiamM: Robust Template Update Strategy for Efficient
Object Tracking (VPU SiamM)

A. Gebrehiwot, J. Bescos, Á. Garćıa-Mart́ın
awet.gebrehiwot@estudiante.uam.es, {j.bescos, alvaro.garcia}@uam.es
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The VPU SiamM tracker is an improved version of the SiamMask [74]. The
SiamMask tracks without any target update strategy. In order to enable more dis-
criminant features and to enhance robustness, the VPU SiamM applies a target
template update strategy, which leverages both the initial ground truth template
and a supplementary updatable template. The initial template provides highly
reliable information and increase robustness against model drift and the updat-
able template integrates the new target information from the predicted target
location given by the current frame. During online tracking, VPU SiamM applies
both forward and backward tracking strategies by updating the updatable target
template with the predicted target. The tracking decision on the next frame is
determined where both templates yield a high response map (score) in the search
region. Data augmentation strategy has been implemented during the training
process of the refinement branch to become robust in handling motion-blurred
and low-resolution datasets during inference.

A.8 RPT: Learning Point Set Representation for Siamese Visual
Tracking (RPT)

H. Zhang, L. Wang, Z. Ma, W. Lu, J. Yin, M. Cheng
1067166127@qq.com, {wanglinyuan, kobebean, lwhfh01}@zju.edu.cn, {yin jun,
cheng miao}@dahuatech.com

RPT tracker is formulated with a two-stage structure. The first stage is com-
posed with two parallel subnets, one for target estimation with RepPoints [84]
in an offline-trained embedding space, the other trained online to provide high
robustness against distractors [13]. The online classification subnet is set to a
lightweight 2-layer convolutional neural network. The target estimation head is
constructed with Siamese-based feature extraction and matching. For the sec-
ond stage, the set of RepPoints with highest confidence (i.e. online classifica-
tion score) is fed into a modified D3S [50] to obtain the segmentation mask. A
segmentation map is obtained by combining enhanced target location channel
with target and background similarity channels. The backbone is ResNet50 pre-
trained on ImageNet, while the target estimation head is trained using pairs of
frames from YouTube-Bounding Box [59], COCO [45] and ImageNet VID [63]
datasets.

A.9 Tracking Student and Teacher (TRASTmask)

M. Dunnhofer, G. Foresti, C. Micheloni
{matteo.dunnhofer, gianluca.foresti, christian.micheloni}@uniud.it

TRASTmask is the combination of the TRAST tracker [17] with a one-shot
segmentation method for target object mask generation. TRAST tracker con-
sists of two components: (i) a fast processing CNN-based tracker, i.e. the Stu-
dent; and (ii) an off-the-shelf tracker, i.e. the Teacher. The Student is trained
offline based on knowledge distillation and reinforcement learning, where mul-
tiple tracking teachers are exploited. Tracker TRASTmask uses DiMP [5] as
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the Teacher. The target object mask is generated inside a frame patch obtained
through the bounding box estimates given by TRAST tracker.

A.10 Ocean: Object-aware Anchor-free Tracking (Ocean)

Z. Zhang, H. Peng
zhangzhipeng2017@ia.ac.cn, houwen.peng@microsoft.com

We extend our object-aware anchor-free tracking framework [92] with novel
transduction and segmentation networks, enabling it to predict accurate target
mask. The transduction network is introduced to infuse the knowledge of the
given mask in the first frame. Inspired by recent work TVOS [89], it compares the
pixel-wise feature similarities between the template and search features, and then
transfers the mask of the template to an attention map based on the similarities.
We add the attention map to backbone features to learn target-background aware
representations. Finally, a U-net shape segmentation pathway is designed to
progressively refine the enhanced backbone features to target mask. The code
will be completely released at https://github.com/researchmm/TracKit.

A.11 Tracking by Student FUSing Teachers (TRASFUSTm)

M. Dunnhofer, G. Foresti, C. Micheloni
{matteo.dunnhofer, gianluca.foresti, christian.micheloni}@uniud.it

The tracker TRASFUSTm is the combination of the TRASFUST tracker [17]
with a one-shot segmentation method for target object mask generation. TRASFUSTm
tracker consists of two components: (i) a fast processing CNN-based tracker, i.e.
the Student; (ii) a pool of off-the-shelf trackers, i.e. Teachers. The Student is
trained offline based on knowledge distillation and reinforcement learning, where
multiple tracking teachers are exploited. After learning, through the learned eval-
uation method, the Student is capable to select the prediction of the best Teacher
of the pool, thus performing robust fusion. Both trackers DiMP [5] and ECO [12]
were chosen as Teachers. The target object mask is generated inside a frame
patch obtained through the bounding box estimates given by TRASFUSTm
tracker.

A.12 Alpha-Refine (AlphaRef)

B. Yan, D. Wang, H. Lu, X. Yang
yan bin@mail.dlut.edu.cn, {wdice, lhchuan}@dlut.edu.cn,
xyang@remarkholdings.com

We propose a simple yet powerful two-stage tracker, which consists of a robust
base tracker (super-dimp) and an accurate refinement module named Alpha-
Refine [82]. In the first stage, super-dimp robustly locates the target, generating
an initial bounding box for the target. Then in the second stage, based on this
result, Alpha-Refine crops a small search region to predict a high-quality mask
for the tracked target. Alpha-Refine exploits pixel-wise correlation for fine fea-
ture aggregation, and uses non-local layer to capture global context information.
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Besides, Alpha-Refine also deploys a delicate mask prediction head [60] to gener-
ate high-quality masks. The complete code and trained models of Alpha-Refine
will be released at github.com/MasterBin-IIAU/AlphaRefine.

A.13 Hierarchical Representations with Discriminative Meta-Filters
in Dual Path Network for Tracking (DPMT)

f. xie, n. wang, k. yang, y. yao
220191672@seu.edu.cn, 20181222016@nuist.edu.cn,
yangkang779@163.con, 220191672@seu.edu.cn

We propose a novel dual path network with discriminative meta-filters and
hierarchical representations to solve these issues. DPMT tracker consists of two
pathways: (i) Geographical Sensitivity Pathway (GASP) and (ii) Geometrically
Sensitivity Pathway (GESP). The modules in Geographical Sensitivity Path-
way (GASP) are more sensitive to the spatial location of targets and distrac-
tors. Subnetworks in Geometrically Sensitivity Pathway (GESP) are designed to
refine the bounding box to fit the target. According to this dual path network de-
sign, Geographical Sensitivity Pathway (GASP) should be trained to own more
discriminative power between foreground and background while Geographical
Sensitivity Pathway (GASP) should focus more on the appearance model of the
object.

A.14 SiamMask (siammask)

Q. Wang, L. Zhang, L. Bertinetto, P. H.S. Torr, W. Hu
qiang.wang@nlpr.ia.ac.cn, {lz, luca}@robots.ox.ac.uk, philip.torr@eng.ox.ac.uk,
wmhu@nlpr.ia.ac.cn

Our method, dubbed SiamMask, improves the offline training procedure of
popular fully-convolutional Siamese approaches for object tracking by augment-
ing their loss with a binary segmentation task. In this way, our tracker gains a
better instance-level understanding towards the object to track by exploiting the
rich object mask representations offline. Once trained, SiamMask solely relies on
a single bounding box initialisation and operates online, producing class-agnostic
object segmentation masks and rotated bounding boxes. Code is publicly avail-
able at https://github.com/foolwood/SiamMask.

A.15 OceanPlus: Online Object-aware Anchor-free Tracking
(OceanPlus)

Z. Zhang, H. Peng, Z. Wu, K. Liu, J. Fu, B. Li, W. Hu
zhangzhipeng2017@ia.ac.cn, houwen.peng@microsoft.com,
Wu.Zhirong@microsoft.com, liukaiwen2019@ia.ac.cn, jianf@microsoft.com,
bli@nlpr.ia.ac.cn, wmhu@nlpr.ia.ac.cn

This model is the extension of the Ocean tracker A.10. Inspired by recent
online models, we introduce an online branch to accommodate to the changes of
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object scale and position. Specifically, the online branch inherits the structure
and parameters from the first three stages of the Siamese backbone network. The
fourth stage keeps the same structure as the original ResNet50, but its initial
parameters are obtained through the pre-training strategy proposed in [5]. The
segmentation refinement pathway is the same as Ocean. We refer the readers
to Ocean tracker A.10 and https://github.com/researchmm/TracKit for more
details.

A.16 fastOcean: Fast Object-aware Anchor-free
Tracking (fastOcean)

Z. Zhang, H. Peng
zhangzhipeng2017@ia.ac.cn, houwen.peng@microsoft.com

To speed up the inference of our submitted tracker OceanPlus, we use Ten-
sorRT58 to re-implement the model. All structure and model parameters are the
same as OceanPlus. Please refer to OceanPlus A.15 and Ocean A.10 for more
details.

A.17 Siamese tracker with discriminative feature embedding and
mask prediction. (SiamMargin)

G. Chen, F. Wang, C. Qian
{chenguangqi, wangfei, qianchen}@sensetime.com

SiamMargin is based on the SiamRPN++ algorithm [41]. In the training
stage, a discrimination loss is added to the embedding layer. In the training
phase the discriminative embedding is offline learned. In the inference stage the
template feature of the object in current frame is obtained by ROIAlign from
features of the current search region and it is updated via a moving average
strategy. The discriminative embedding features are leveraged to accommodate
the appearance change with properly online updating. Lastly, the SiamMask [74]
model is appended to obtain the pixel-level mask prediction.

A.18 Siamese Tracker with Enhanced Template and Generalized
Mask Generator (SiamEM)

Y. Li, Y. Ye, X. Ke
liyuezhou.cm@gmail.com, yyfzu@foxmail.com, kex@fzu.edu.cn

SiamEM is a Siamese tracker with enhanced template and generalized mask
generator. SiamEM improves SiamFC++ [81] by obtaining feature results of
the template and flip template in the network header while making decisions
based on quality scores to predict bounding boxes. The segmentation network
presented in [10] is used as a mask generation network.

58 https://github.com/NVIDIA/TensorRT
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A.19 TRacker by using ATtention (TRAT)

H. Saribas, H. Cevikalp, B. Uzun
{hasansaribas48, hakan.cevikalp, eee.bedirhan}@gmail.com

The tracker ‘TRacker by using ATtention’ uses a two-stream network which
consists of a 2D-CNN and a 3D-CNN, to use both spatial and temporal infor-
mation in video streams. To obtain temporal (motion) information, 3D-CNN is
fed by stacking the previous 4 frames with one stride. To extract spatial infor-
mation, the 2D-CNN is used. Then, we fuse the two-stream network outputs by
using an attention module. We use ATOM [13] tracker and ResNet backbone as
a baseline. Code is available at https://github.com/Hasan4825/TRAT.

A.20 InfoGAN based tracker: InfoVITAL (InfoVital)

H. Kuchibhotla, M. Dasari, R. Gorthi
{ee18m009, ee18d001, rkg}@iittp.ac.in

Architecture of InfoGAN (Generator, Discriminator and a Q-Network) is
incorporated in the Tracking-By-Detection Framework using the Mutual Infor-
mation concept to bind two distributions (latent code) to the target and the
background samples. Additional Q Network helps in proper estimation of the
assigned distributions and the network is trained offline in an adversarial fash-
ion. During online testing, the additional information from the Q-Network is
used to obtain the target location in the subsequent frames. This greatly helps
to assess the drift from the exact target location from frame-to-frame and also
during occlusion.

A.21 Learning Discriminative Model Prediction for
Tracking (DiMP)

G. Bhat, M. Danelljan, L. Van Gool, R. Timofte
{goutam.bhat, martin.danelljan, vangool, timofter}@vision.ee.ethz.ch

DiMP is an end-to-end tracking architecture, capable of fully exploiting both
target and background appearance information for target model prediction. The
target model here constitutes the weights of a convolution layer which performs
the target-background classification. The weights of this convolution layer are
predicted by the target model prediction network, which is derived from a dis-
criminative learning loss by applying an iterative optimization procedure. The
model prediction network employs a steepest descent based methodology that
computes an optimal step length in each iteration to provide fast convergence.
The online learned target model is applied in each frame to perform target-
background classification. The final bounding box is then estimated using the
overlap maximization approach as in [13]. See [5] for more details about the
tracker.
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A.22 SuperDiMP (SuperDiMP)

G. Bhat, M. Danelljan, F. Gustafsson, T. B. Schön, L. Van Gool, R. Timofte
{goutam.bhat, martin.danelljan}@vision.ee.ethz.ch, {fredrik.gustafsson,
thomas.schon}@it.uu.se, {vangool, timofter}@vision.ee.ethz.ch

SuperDiMP [23] combines the standard DiMP classifier from [5] with the
EBM-based bounding-box regressor from [22,14]. Instead of training the bound-
ing box regression network to predict the IoU with an L2 loss [5], it is trained
using the NCE+ approach [23] to minimize the negative-log likelihood. Further,
the tracker uses better training and inference settings.

A.23 Learning What to Learn for Video Object
Segmentation (LWTL)

G. Bhat, F. Jaremo Lawin, M. Danelljan, A. Robinson, M. Felsberg, L. Van
Gool, R. Timofte
goutam.bhat@vision.ee.ethz.ch, felix.jaremo-lawin@liu.se,
martin.danelljan@vision.ee.ethz.ch, {andreas.robinson, michael.felsberg}@liu.se,
{vangool, timofter}@vision.ee.ethz.ch

LWTL is an end-to-end trainable video object segmentation VOS architecture
which captures the current target object information in a compact parametric
model. It integrates a differentiable few-shot learner module, which predicts the
target model parameters using the first frame annotation. The learner is designed
to explicitly optimize an error between target model prediction and a ground
truth label, which ensures a powerful model of the target object. Given a new
frame, the target model predicts an intermediate representation of the target
mask, which is input to the offline trained segmentation decoder to generate
the final segmentation mask. LWTL learns the ground-truth labels used by the
few-shot learner to train the target model. Furthermore, a network module is
trained to predict spatial importance weights for different elements in the few-
shot learning loss. All modules in the architecture are trained end-to-end by
maximizing segmentation accuracy on annotated VOS videos. See [7] for more
details.

A.24 Adaptive Failure-Aware Tracker (AFAT)

T. Xu, S. Zhao, Z. Feng, X. Wu, J. Kittler
tianyang.xu@surrey.ac.uk, zsc960813@163.com, z.feng@surrey.ac.uk,
wu xiaojun@jiangnan.edu.cn, j.kittler@surrey.ac.uk

Adaptive Failure-Aware Tracker [80] is based on Siamese structure. First,
multi-RPN module is employed to predict the central location with Resnet-50.
Second, a 2-cell LSTM is established to perform quality prediction with an ad-
ditional motion model. Third, fused mask branch is exploited for segmentation.
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A.25 Ensemble correlation filter tracking based on temporal
confidence learning (TCLCF)

C. Tsai
chiyi tsai@gms.tku.edu.tw

TCLCF is a real-time ensemble correlation filter tracker based on the tem-
poral confidence learning method. In the current implementation, we use four
different correlation filters to collaboratively track the same target. The TCLCF
tracker is a fast and robust generic object tracker without GPU acceleration.
Therefore, it can be implemented on the embedded platform with limited com-
puting resources.

A.26 AFOD: Adaptive Focused Discriminative Segmentation
Tracker (AFOD)

Y. Chen, J. Xu, J. Yu
{yiwei.chen, jingtao.xu, jiaqian.yu}@samsung.com

The proposed tracker is based on D3S and DiMP [5], employing ResNet-50 as
backbone. AFOD calculates the feature similarity to foreground and background
of the template as proposed in D3S. For discriminative features, AFOD updates
the target model online. AFOD adaptively utilizes different strategies during
tracking to update the scale of search region and to adjust the prediction. More-
over, the Lovasz hinge loss metric is used to learn the IoU score in offline training.
The segmentation module is trained using both databases YoutubeVOS2019 and
DAVIS2016. The offline training process includes two stages: (i) BCE loss is used
for optimization and (ii) the Lovasz hinge is applied for further fine tuning. For
inference, two ResNet-50 models are used; one for the segmentation and another
for the target.

A.27 Fast Saliency-guided Continuous Correlation Filter-based
tracker (FSC2F)

A. Memarmoghadam
a.memarmoghadam@yahoo.com

The tracker FSC2F is based on the ECOhc approach [12]. A fast spatio
temporal saliency map is added using the PQFT approach [21]. The PQFT model
utilizes intensity, colour, and motion features for quaternion representation of the
search image context around the previously pose of the tracked object. Therefore,
attentional regions in the coarse saliency map can constrain target confidence
peaks. Moreover, a faster scale estimation algorithm is utilised by enhancing the
fast fDSST method [15] via jointly learning of the sparsely-sampled scale spaces.

A.28 Adaptive Visual Tracking and Instance
Segmentation (DESTINE)

S.M. Marvasti-Zadeh, J. Khaghani, L. Cheng, H. Ghanei-Yakhdan, S. Kasaei
mojtaba.marvasti@ualberta.ca, khaghani@ualberta.ca, lcheng5@ualberta.ca,
hghaneiy@yazd.ac.ir, kasaei@sharif.edu
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DESTINE is a two-stage method consisting of an axis-aligned bounding box
estimation and mask prediction, respectively. First, DiMP50 [5] is used as the
baseline tracker switching to ATOM [13] when IoU and normalized L1-distance
between the results meet predefined thresholds. Then, to segment the estimated
bounding box, the segmentation network of FRTM-VOS [60] uses the predicted
mask by SiamMask [74] as its scores. Finally, DESTINE selects the best target
mask according to the ratio of foreground pixels for two predictions. The codes
are publicly released at https://github.com/MMarvasti/DESTINE.

A.29 Scale Adaptive Mean-Shift Tracker (ASMS)

Submitted by VOT Committee
The mean-shift tracker optimizes the Hellinger distance between template

histogram and target candidate in the image. This optimization is done by a
gradient descend. ASMS [73] addresses the problem of scale adaptation and
presents a novel theoretically justified scale estimation mechanism which re-
lies solely on the mean-shift procedure for the Hellinger distance. ASMS also
introduces two improvements of the mean-shift tracker that make the scale es-
timation more robust in the presence of background clutter – a novel histogram
colour weighting and a forward-backward consistency check. Code available at
https://github.com/vojirt/asms.

A.30 ATOM: Accurate Tracking by Overlap Maximization (ATOM)

Submitted by VOT Committee
ATOM separates the tracking problem into two sub-tasks: i) target classifi-

cation, where the aim is to robustly distinguish the target from the background;
and ii) target estimation, where an accurate bounding box for the target is deter-
mined. Target classification is performed by training a discriminative classifier
online. Target estimation is performed by an overlap maximization approach
where a network module is trained offline to predict the overlap between the
target object and a bounding box estimate, conditioned on the target appear-
ance in first frame. See [13] for more details.

A.31 Discriminative Correlation Filter with Channel and Spatial
Reliability - C++ (CSRpp)

Submitted by VOT Committee
The CSRpp tracker is the C++ implementation of the Discriminative Cor-

relation Filter with Channel and Spatial Reliability (CSR-DCF) tracker [47].

A.32 Incremental Learning for Robust Visual Tracking (IVT)

Submitted by VOT Committee
The idea of the IVT tracker [62] is to incrementally learn a low-dimensional

sub-space representation, adapting on-line to changes in the appearance of the
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target. The model update, based on incremental algorithms for principal compo-
nent analysis, includes two features: a method for correctly updating the sample
mean, and a forgetting factor to ensure less modelling power is expended fitting
older observations.

A.33 Kernelized Correlation Filter (KCF)

Submitted by VOT Committee
This tracker is a C++ implementation of Kernelized Correlation Filter [24]

operating on simple HOG features and Colour Names. The KCF tracker is equiv-
alent to a Kernel Ridge Regression trained with thousands of sample patches
around the object at different translations. It implements multi-thread multi-
scale support, sub-cell peak estimation and replacing the model update by linear
interpolation with a more robust update scheme. Code available at
https://github.com/vojirt/kcf.

A.34 Multiple Instance Learning tracker (MIL)

Submitted by VOT Committee
MIL tracker [1] uses a tracking-by-detection approach, more specifically Mul-

tiple Instance Learning instead of traditional supervised learning methods and
shows improved robustness to inaccuracies of the tracker and to incorrectly la-
belled training samples.

A.35 Robust Siamese Fully Convolutional Tracker (RSiamFC)

Submitted by VOT Committee
RSiamFC tracker is an extended SiamFC tracker [4] with a robust training

method which puts a transformation on training sample to generate a pair of
samples for feature extraction.

A.36 VOS SOTA method (STM)

Submitted by VOT Committee
Please see the original paper for details [56].

A.37 (UPDT)

Submitted by VOT Committee
Please see the original paper for details [6].

B VOT-LT2020 submissions

This appendix provides a short summary of trackers considered in the VOT-
LT2020 challenge.



The Eighth Visual Object Tracking VOT2020 Challenge Results 45

B.1 Long-Term Visual Tracking with Assistant Global Instance
Search (Megtrack)

Z. Mai, H. Bai, K. Yu, X. QIu
marchihjun@gmail.com, 522184271@qq.com, valjean1832@outlook.com,
qiuxi@megvii.com

Megtrack tracker applies a 2-stage method that consists of local tracking
and multi-level search. The local tracker is based on ATOM [13] algorithm im-
proved by initializing online correlation filters with backbone feature maps and
by inserting a bounding box calibration branch in the target estimation module.
SiamMask [74] is cascaded to further refining the bounding box after locating
the centre of the target. The multi-level search uses RPN-based regression net-
work to generate candidate proposals before applying GlobalTrack [26]. Appear-
ance scores are calculated using both the online-learned RTMDNet [29] and the
offline-learned one-shot matching module and linearly combine them to lever-
age the former’s high robustness and the latter’s discriminative power. Using a
pre-defined threshold, the highest-scored proposal is considered as the current
tracker state and used to re-initialize the local tracker for consecutive tracking.

B.2 Skimming-Perusal Long-Term Tracker (SPLT)

B. Yan, H. Zhao, D. Wang, H. Lu, X. Yang
{yan bin, haojie zhao}@mail.dlut.edu.cn, {wdice, lhchuan}@dlut.edu.cn,
xyang@remarkholdings.com

This is the original SPLT tracker [83] without modification. SPLT consists of
a perusal module and a skimming module. The perusal module aims at obtain-
ing precise bounding boxes and determining the target’s state in a local search
region. The skimming module is designed to quickly filter out most unreliable
search windows, speeding up the whole pipeline.

B.3 A Baseline Long-Term Tracker with Meta-Updater (LTMU B)

K. Dai, D. Wang, J. Li, H. Lu, X. Yang
dkn2014@mail.dlut.edu.cn, {wdice, jianhual}@dlut.edu.cn, lhchuan@dlut.edu.cn,
xyang@remarkholdings.com

The tracker LTMU B is a simplified version of LTMU [11] and LTDSE with
comparable performance adding a RPN-based regression network, a sliding-
window based re-detection module and a complex mechanism for updating mod-
els and target re-localization. The short-term tracker LTMU B contains two com-
ponents. One is for target localization and based on DiMP algorithm [5] using
ResNet50 as the backbone network. The update of DiMP is controlled by meta-
updater which is proposed by LTMU 59. The second component is the SiamMask
network [74] used for refining the bounding box after locating the centre of the
target. It also takes the local search region as the input and outputs the tight

59 https://github.com/Daikenan/LTMU
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bounding boxes of candidate proposals. For the verifier, we adopts MDNet net-
work [5] which uses VGGM as the backbone and is pre-trained on ILSVRC VID
dataset. The classification score is finally obtained by sending the tracking re-
sult’s feature to three fully connected layers. GlobalTrack [26] is utilised as the
global detector.

B.4 Robust Long-Term Object Tracking via Improved
Discriminative Model Prediction (RLTDiMP)

S. Choi, J. Lee, Y. Lee, A. Hauptmann
seokeon@kaist.ac.kr, {ljhyun33, swack9751}@korea.ac.kr, alex@cs.cmu.edu

We propose an improved Discriminative Model Prediction method for ro-
bust long-term tracking based on a pre-trained short-term tracker. The baseline
tracker is SuperDiMP which combines the bounding-box regressor of PrDiMP [14]
with the standard DiMP [5] classifier. To make our model more discriminative
and robust, we introduce uncertainty reduction using random erasing, back-
ground augmentation for more discriminative feature learning, and random search
with spatio-temporal constraints. Code available at https://github.com/bismex/RLT-
DIMP.

B.5 Long-term MDNet (ltMDNet)

H. Fan, H. Ling
{hefan, hling}@cs.stonybrook.edu

We designate a long-term tracker by adapting MDNet [55]. In specific, we
utilize an instance-aware detector [26] to generate target proposals. Then, these
proposals are forwarded to MDNet for classification. Since the detector per-
forms detection on the full image, the final tracker can locate the target in the
whole image which can robustly deal with full occlusion and out-of-view. The
instance-aware detector is implemented by on Faster R-CNN using ResNet-50.
The MDNet is implemented as in the original paper.

B.6 (CLGS)

Submitted by VOT Committee
In this work, we develop a complementary local-global search (CLGS) frame-

work to conduct robust long-term tracking, which is a local robust tracker based
on SiamMask [74], a global detection based on cascade R-CNN [8], and an online
verifier based on Real-time MDNet [29]. During online tracking, the SiamMask
model locates the target in local region and estimates the size of the target ac-
cording to the predicted mask. The online verifier is used to judge whether the
target is found or lost. Once the target is lost, a global R-CNN detector (without
class prediction) is used to generate region proposals on the whole image. Then,
the online verifier will find the target from region proposals again. Besides, we
design an effective online update strategy to improve the discrimination of the
verifier.
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B.7 (LT DSE)

Submitted by VOT Committee
This algorithm divides each long-term sequence into several short episodes

and tracks the target in each episode using short-term tracking techniques.
Whether the target is visible or not is judged by the outputs from the short-
term local tracker and the classification-based verifier updated online. If the
target disappears, the image-wide re-detection will be conducted and output the
possible location and size of the target. Based on these, the tracker crops the
local search region that may include the target and sends it to the RPN based
regression network. Then, the candidate proposals from the regression network
will be scored by the online learned verifier. If the candidate with the maximum
score is above the pre-defined threshold, the tracker will regard it as the tar-
get and re-initialize the short-term components. Finally, the tracker conducts
short-term tracking until the target disappears again.

B.8 (SiamDW LT)

Submitted by VOT Committee
SiamDW LT is a long-term tracker that utilizes deeper and wider backbone

networks with fast online model updates. The basic tracking module is a short-
term Siamese tracker, which returns confidence scores to indicate the tracking
reliability. When the Siamese tracker is uncertain on its tracking accuracy, an
online correction module is triggered to refine the results. When the Siamese
tracker is failed, a global re-detection module is activated to search the target
in the images. Moreover, object disappearance and occlusion are also detected
by the tracking confidence. In addition, we introduce model ensemble to further
improve the tracking accuracy and robustness.

C VOT-RGBT2020 submissions

This appendix provides a short summary of trackers considered in the VOT-
RGBT2020 challenge.

C.1 Multi-Model Continuous Correlation Filter for rgbt visual
object tracking (M2C2Frgbt)

A. Memarmoghadam
a.memarmoghadam@yahoo.com

Inspired by ECO tracker [12], we propose a robust yet efficient tracker namely
as M2C2Frgbt that utilizes multiple models of the tracked object and estimates
its position every frame by weighted cumulative fusion of their respective re-
gressors in a ridge regression optimization problem [51]. Moreover, to accelerate
tracking performance, we propose a faster scale estimation method in which the
target scale filter is jointly learned via sparsely sampled scale spaces constructed
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by just the thermal infrared data. Our scale estimation approach enhances the
running speed of fDSST [15] as the baseline algorithm better than 20% while
maintaining the tracking performance as well. To suppress unwanted samples
mostly belong to the occlusion or other non-object data, we conservatively up-
date every model on-the-fly in a non-uniform sparse manner.

C.2 Jointly Modelling Motion and Appearance Cues for Robust
RGB-T Tracking (JMMAC)

P. Zhang, S. Chen, D. Wang, H. Lu , X. Yang
pyzhang@mail.dlut.edu.cn, shuhaochn@mail.dlut.edu.cn, wdice@dlut.edu.cn,
lhchuan@dlut.edu.cn, xyang@remarkholdings.com

Our tracker is based on [88], consisting of two components, i.e. multimodal
fusion for appearance trackers and camera motion estimation. In multimodal
fusion, we develop a late fusion method to infer the fusion weight maps of both
RGB and thermal (T) modalities. The fusion weights are determined by us-
ing offline-trained global and local Multimodal Fusion Networks (MFNet), and
then adopted to linearly combine the response maps of RGB and T modali-
ties obtained from ECOs. In MFNet, the truncated VGG-M networks is used as
backbone to extract deep feature. In camera motion estimation, when the drastic
camera motion is detected, we compensate movement to correct the search region
by key-point-based image registration technique. Finally, we employ YOLOv2
to refine the bounding box. The scale estimation and model updating methods
are borrowed from ECO in default.

C.3 Accurate Multimodal Fusion for RGB-T Object
Tracking (AMF)

P. Zhang, S. Chen, B. Yan, D. Wang, H. Lu, X. Yang
{pyzhang, shuhaochn, yan bin}@mail.dlut.edu.cn, {wdice, lhchuan}@dlut.edu.cn,
xyang@remarkholdings.com

We achieve multimodal fusion for RGB-T tracking by linear combining the
response maps obtained from two monomodality base trackers, i.e., DiMP. The
fusion weight is obtained by the Multimodal Fusion Network proposed in [88].
To achieve high accuracy, the bounding box obtained from fused DiMP is then
refined by a refinement module in visible modality. The refinement module,
namely Alpha-Refine, aggregates features via a pixel-level correlation layer and
a non-local layer and adaptively selects the most adequate results from three
branches, namely bounding box, corner and mask heads, which can predict more
accurate bounding boxes. Note that the target scale estimated by IoUNet in
DiMP is also applied in visible modality which is followed by Alpha-Refine and
the model updating method is borrowed from DiMP in default.
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C.4 SqueezeNet Based Discriminative Correlation Filter
Tracker (SNDCFT)

A. Varfolomieiev
a.varfolomieiev@kpi.ua

The tracker uses FHOG and convolutional features extracted from both
video and infrared modalities. As the convolutional features, the output of the
’fire2/concat’ layer of the original SqueezeNet network [27] is used (no additional
pre-training for the network is performed). The core of the tracker is the spa-
tially regularized discriminative correlation filter, which is calculated using the
ADMM optimizer. The calculation of the DCF filter is performed independently
over different feature modalities. The filter is updated in each frame using simple
exponential forgetting.

C.5 Decision Fusion Adaptive Tracker (DFAT)

H. Li, Z. Tang, T. Xu, X. Zhu, X. Wu, J. Kittler
hui li jnu@163.com, 1030415519@vip.jiangnan.edu.cn, tianyang.xu@surrey.ac.uk,
xuefeng zhu95@163.com, wu xiaojun@jiangnan.edu.cn, j.kittler@surrey.ac.uk

Decision Fusion Adaptive Tracker is based on Siamese structure. Firstly, the
multi-layer deep features are extracted by Resnet-50. Then, multi-RPN module
is employed to predict the central location with multi-layer deep features. Finally,
an adaptive weight strategy for decision level fusion is utilized to generate the
final result. In addition, the template features are updated by a linear template
update strategy.

C.6 Multi-modal fusion for end-to-end RGB-T tracking (mfDiMP)

Submitted by VOT Committee

The mfDiMP tracker contains an end-to-end tracking framework for fusing
the RGB and TIR modalities in RGB-T tracking [87]. The mfDiMP tracker fuses
modalities at the feature level on both the IoU predictor and the model predictor
of DiMP [87] and won the VOT-RGBT2019 challenge.

C.7 Online Deeper and Wider Siamese Networks for RGBT Visual
Tracking (SiamDW-T)

Submitted by VOT Committee

SiamDW-T is based on previous work by Zhang and Peng [91], and extends it
with two fusion strategies for RGBT tracking. A simple fully connected layer is
appended to classify each fused feature to background or foreground. SiamDW-
T achieved the second rank in VOT-RGBT2019 and its code is available at
https://github.com/researchmm/VOT2019.
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D VOT-RGBD2020 submissions

This appendix provides a short summary of trackers considered in the VOT-
RGBD2020 challenge.

D.1 Accurate Tracking by Category-Agnostic Instance
Segmentation for RGBD Image (ATCAIS)

Y. Wang, L. Wang, D. Wang, H. Lu, X. Yang
{wym097,wlj,wdice,lhchuan}@dlut.edu.cn, xyang@remarkholdings.com

The proposed tracker combines both instance segmentation and the depth in-
formation for accurate tracking. ATCAIS is based on the ATOM tracker and the
HTC instance segmentation method which is re-trained in a category-agnostic
manner. The instance segmentation results are used to detect background dis-
tractors and to re-fine the target bounding boxes to prevent drifting. The depth
value is used to detect the target occlusion or disappearance and re-finding the
target.

D.2 Depth Enhanced DiMP for RGBD Tracking (DDiMP)

S. Qiu, Y. Gu, X. Zhang
{shoumeng, gyz, xlzhang}@mail.sim.ac.cn

DDiMP is based on SuperDiMP which combines the standard DiMP classifier
from [5] with the bounding box regressor from [5]. The update strategy of the
model during the tracking process is enhanced by using the model’s confidence
for the current tracking results. Output of IoU-Net is used to determine whether
to fine-tune the shape, size, and position of the target. To handle scale variations,
the target is searched over five scales 1.025{−2,−1,0,1,2}, and depth information
is utilized to prevent scale from changing too quickly. Finally, two trackers with
different model update confidence thresholds run in parallel, and the output with
higher confidence is selected as the tracking result of the current frame.

D.3 Complementary Local-Global Search for RGBD Visual
Tracking (CLGS-D)

H. Zhao, Z. Wang, B. Yan. D. Wang, H. Lu, X. Yang
{haojie zhao,zzwang,yan bin,wdice,lhchuan@dlut.edu.cn}@mail.dlut.edu.cn,
xyang@remarkholdings.com

CLGS-D tracker is based on SiamMask, FlowNetv2 , CenterNet, Real-time
MDNet and a novel box refine module. The SiamMask model is used as the
base tracker. MDNet is used to judge whether the target is found or lost. Once
the target is lost, CenterNet is used to generate region proposals on the whole
image. FlowNetv2 is used to estimate the motion of the target by generating a
flow map. Then, the region proposals are filtered with aid of the flow and depth
maps. Finally, an online ”verifier” will find the target from the remaining region
proposals again. A novel module is also used in this work to refine the bounding
box.
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D.4 Siamese Network for Long-term RGB-D Tracking (Siam LTD)

X.-F. Zhu, H. Li, S. Zhao, T. Xu, X.-J. Wu
{xuefeng zhu95,hui li jnu,zsc960813,wu xiaojun}@163.com,
tianyang.xu@surrey.ac.uk

Siam LTD employes ResNet-50 to extract backbone features and RPN branch
to locate the centre. In addition, a re-detection mechanism is introduced.
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72. Čehovin, L., Leonardis, A., Kristan, M.: Visual object tracking performance mea-
sures revisited. IEEE Transactions on Image Processing 25(3), 1261–1274 (2016)

73. Voj́ı̃r, T., Noskova, J., Matas, J.: Robust scale-adaptive mean-shift for tracking.
Pattern Recognition Letters 49, 250–258 (2014)

74. Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking
and segmentation: A unifying approach. In: CVPR. pp. 1328–1338 (2019)

75. Wang, X., Kong, T., Shen, C., Jiang, Y., Li, L.: SOLO: segmenting objects by
locations. arXiv preprint arXiv:1912.04488 (2019)

76. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: Comp. Vis.
Patt. Recognition (2013)

77. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. PAMI 37(9), 1834–1848
(2015)

78. Xiao, J., Stolkin, R., Gao, Y., Leonardis, A.: Robust Fusion of Color and Depth
Data for RGB-D Target Tracking Using Adaptive Range-Invariant Depth Models
and Spatio-Temporal Consistency Constraints. IEEE Transactions on Cybernetics
48, 2485 – 2499 (2018)

79. Xu, N., Price, B., Yang, J., Huang, T.: Deep grabcut for object selection. In: Proc.
British Machine Vision Conference (2017)

80. Xu, T., Feng, Z.H., Wu, X.J., Kittler, J.: Afat: Adaptive failure-aware tracker for
robust visual object tracking. arXiv preprint arXiv:2005.13708 (2020)

81. Xu, Y., Wang, Z., Li, Z., Ye, Y., Yu, G.: Siamfc++: Towards robust and accurate
visual tracking with target estimation guidelines. arXiv preprint arXiv:1911.06188
(2019)

82. Yan, B., Wang, D., Lu, H., Yang, X.: Alpha-refine: Boosting tracking performance
by precise bounding box estimation. arXiv preprint arXiv:2007.02024 (2020)

83. Yan, B., Zhao, H., Wang, D., Lu, H., Yang, X.: Skimming-Perusal Tracking: a
framework for real-time and robust long-term tracking. In: IEEE International
Conference on Computer Vision (ICCV) (2019)

84. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: Point set representation
for object detection. In: The IEEE International Conference on Computer Vision
(ICCV). pp. 9657–9666 (Oct 2019)

85. Yiming, L., Shen, J., Pantic, M.: Mobile face tracking: A survey and benchmark.
arXiv:1805.09749v1 (2018)

86. Young, D.P., Ferryman, J.M.: PETS Metrics: On-line performance evaluation ser-
vice. In: ICCCN ’05 Proceedings of the 14th International Conference on Computer
Communications and Networks. pp. 317–324 (2005)

87. Zhang, L., Danelljan, M., Gonzalez-Garcia, A., van de Weijer, J., Khan, F.S.: Multi-
modal fusion for end-to-end rgb-t tracking. In: IEEE International Conference on
Computer Vision, ICCV Workshops (2019)

88. Zhang, P., Zhao, J., Wang, D., Lu, H., Yang, X.: Jointly modeling motion and
appearance cues for robust rgb-t tracking. CoRR abs/2007.02041 (2020)

89. Zhang, Y., Wu, Z., Peng, H., Lin, S.: A transductive approach for video object
segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 4000–4009 (June 2020)

http://prints.vicos.si/publications/302
http://prints.vicos.si/publications/302
https://doi.org/http://dx.doi.org/10.1016/j.neucom.2017.02.036


56 M. Kristan et al.

90. Zhang, Y., Wang, D., Wang, L., Qi, J., Lu, H.: Learning Regression and Verification
Networks for Long-term Visual Tracking. CoRR abs/1809.04320 (2018)

91. Zhang, Z., Peng, H.: Deeper and wider siamese networks for real-time visual track-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4591–4600 (June 2019)

92. Zhang, Z., Peng, H., Fu, J., Li, B., Hu, W.: Ocean: Object-aware anchor-free track-
ing. arXiv preprint arXiv:2006.10721 (2020)

93. Zhu, P., Wen, L., Bian, X., Haibin, L., Hu, Q.: Vision meets drones: A challenge.
arXiv preprint arXiv:1804.07437 (2018)


