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Abstract—A long-term visual object tracking performance
evaluation methodology and a benchmark are proposed. Perfor-
mance measures are designed by following a long-term tracking
definition to maximize the analysis probing strength. The new
measures outperform existing ones in interpretation potential and
in better distinguishing between different tracking behaviors. We
show that these measures generalize the short-term performance
measures, thus linking the two tracking problems. Furthermore,
the new measures are highly robust to temporal annotation
sparsity and allow annotation of sequences hundreds of times
longer than in the current datasets without increasing manual
annotation labor. A new challenging dataset of carefully selected
sequences with many target disappearances is proposed. A new
tracking taxonomy is proposed to position trackers on the short-
term/long-term spectrum. The benchmark contains an extensive
evaluation of the largest number of long-term trackers and
comparison to state-of-the-art short-term trackers. We analyze
the influence of tracking architecture implementations to long-
term performance and explore various re-detection strategies as
well as influence of visual model update strategies to long-term
tracking drift. The methodology is integrated in the VOT toolkit
to automate experimental analysis and benchmarking and to
facilitate future development of long-term trackers.

Index Terms—Visual object tracking, long-term tracking, per-
formance measures, tracking benchmark.

I. INTRODUCTION

V ISUAL object tracking has significantly advanced over
the last decade with emergence of standard datasets,

performance evaluation protocols [1], [2], [3], [4], [5] and
tracking challenges [6], [5].

Popular single-target tracking benchmarks [7], [2], [3], [4]
focus on short-term trackers. The introduction of gradually
more demanding benchmarks lead to the development of
short-term trackers that cope well with significant appearance
and motion changes and are robust to short-term occlusions.
Several recent publications [8], [9], [10] show that short-term
trackers fare poorly on very long sequences since localization
errors and updates gradually deteriorate their visual model,
leading to drift and failure. Typically, short-term trackers
assume that the target is always in the field of view (this is
reflected in the standard dataset). When this is not the case,
the short-term tracker fails, forever.

Long-term trackers are designed for scenarios where the
target may disappear from the field of view, may be fully
occluded for long periods of time and where cuts, i.e. unpre-
dictable abrupt changes of target pose and appearance, may
occur. A long-term tracker thus requires to have the ability

to report that the target is not present, e.g. by providing a
confidence score of the estimated pose, which may be binary
or continuous, with low confidence suggesting the target is ab-
sent. A crucial difference to short-term tracking is thus the re-
detection capability, i.e. the ability to localize the target when
no information about current poses is available (Figure 1). This
requires fundamentally different search strategies and visual
model adaptation mechanisms. These long-term aspects have
been explored far less than the short-term counterparts due to
lack of benchmarks and performance measures probing long-
term capabilities. This is the focus of our work.

Apart from coping with long sequences, long-term tracking
primarily refers to the sequence properties (number of target
disappearances, etc.) and the type of tracking output expected.
We define the notion of the pure long-term tracker and contrast
it with pure short-term tracking. We then argue there is a
spectrum of tracker designs on the short-term/long-term axis
and present a new tracking taxonomy for fine categorization
of long-term trackers.

Based on the long-term definition we propose new per-
formance measures, evaluation protocol and the dataset, all
carefully designed to expose the long-term tracking properties.
We experimentally show the proposed performance measures
produce well-interpretable results. We also show significant
robustness to the annotation sparsity.

Using the proposed evaluation tools, we provide an in-
depth analysis of a number of long-term trackers. The analysis
includes a new re-detection experiment that exposes crucial
long-term tracking capabilities. The tracker performance is
analyzed with respect to sequence attributes and the target dis-
appearance rate. Analysis of long-term tracking architectures
is provided as well. We test the overall performance of the
architectures and analyze re-detection strategies and influence
of the model update strategies on the long-term tracking drift.
We make the following contributions:

• A new long-term tracking performance evaluation
methodology which introduces novel performance mea-
sures. These are the first measures that principally reflect
detection as well as localization accuracy in a long-
term tracking domain. Comparison with exiting measures
shows significant advantages in their expressive power.

• A new dataset is constructed of carefully selected se-
quences with a large number of target disappearances
per sequence to emphasize long-term tracking properties.
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Fig. 1. Differences between short-term and long-term tracking. (a) In short-term tracking, the target, a red box, may move and change appearance, but it is
always at least partially visible. (b) In long-term tracking, the box may disappear from the view or be fully occluded by other objects for long periods of
time. Within these periods, the state of the object is not defined and should not be reported by the tracker.

Sequences are annotated with nine visual attributes which
enable in-depth analysis of trackers.

• A detailed analysis of a number of long-term trackers
covering several aspects of long-term properties, se-
quence attribute and target disappearance rate.

• A detailed analysis of long-term tracker architectures
from perspective of re-detection and drift-prevention ap-
proaches.

All trackers, performance measures and evaluation protocol
have been integrated into the VOT toolkit [4], to automate
experimental analysis and benchmarking and facilitate devel-
opment of long-term trackers. The dataset, all the trackers as
well as the changes to the toolkit are publicly available1.

II. RELATED WORK

Performance evaluation in single-object tracking has pri-
marily focused on short-term trackers [7], [4], [3], [2]. The
currently widely-used methodologies originate from three
benchmarks, OTB [1], [7], VOT [11], [4] and ALOV [2]
which primarily differ in the dataset construction, performance
measures and evaluation protocols.

Benchmarks like [7], [2], [3] propose large datasets, rea-
soning that quantity reduces the variance in performance
estimation. On the other hand, the longest-running bench-
mark [4] argues that quantity does not necessarily mean quality
and promotes moderate-sized datasets with carefully chosen
diverse sequences for fast and informative evaluation. Several
works have focused on specific tracking setups. Mueller et
al. [8] proposed the UAV123 dataset for tracking from drones.
Galoogahi et al. [12] introduced a high-frame-rate dataset
to analyze trade-offs between tracker speed and robustness.
Čehovin et al. [13] proposed a dataset with an active camera
view control using omni directional videos for accurate track-
ing analysis as a function camera motion attributes. The target
never leaves the field of view in these datasets, making them
unsuitable for long-term tracking properties evaluation.

Many performance measures have been explored to evaluate
and rank single-target trackers [14]. All dominant short-term
performance measures [7], [2], [4] are based on the overlap
(intersection over union) between the ground truth bounding
boxes and tracker predictions, but significantly differ in its use.
ALOV [2] uses the F-measure computed at overlap threshold

1Dataset and evaluation available on: http://www.votchallenge.net/

of 0.5. OTB [7] avoids the threshold by computing the average
overlap over the sequences as the primary measure. The
VOT [4] resets the tracker once the overlap drops to zero,
and proposes to measure robustness by the number of times
the tracker was reset, the accuracy by average overlap during
successful tracking periods and an expected average overlap on
a typical short-term sequence. These measures do not account
for tracker ability to report target absence and are therefore
not suitable for long-term tracking.

A large number of performance measures have been pro-
posed for multi-object tracking [15], [16]. The two most
widely used are MOTA and MOTP [17]. MOTA is based on
counting wrong target predictions. MOTP [17] measures the
average overlap on frames where target is correctly identified
and the overlap is greater than 0.5. Both measures require set-
ting a threshold that defines whether the target is successfully
located. The measure are sensitive to the setting since a small
change of the threshold may have a large impact on the results
[4].

Another group of measures is based on target trajectories
[18]. The trajectory of each annotated target in the video is
classified into three classes: mostly tracked (MT), partially
tracked (PT) and mostly lost (ML). These measures require (ad
hoc) thresholds. Since the measures are defined on multiple
trajectories, applying them to a single trajectory, which is
the case in single-target tracking, translates them to success
rate [1] calculated at specific thresholds.

A few papers have recently proposed datasets focusing on
long-term performance evaluation. Tao et al. [10] created arti-
ficial long sequences by repeatedly playing shorter sequences
forward and backward. Such a dataset exposes the problem of
gradual drift in short-term trackers, but does not fully expose
the long-term abilities since the target never leaves the field of
view. Mueller et al. [8] proposed UAV20L dataset of twenty
long sequences with target frequently exiting and re-entering
the scene, but used it to evaluate mostly short-term trackers.
A dataset with many cases of fully occluded and absent
target has been recently proposed by Moudgil and Gandhi [9].
Unfortunately, the large number of target disappearances was
obtained by significantly increasing the sequence length, which
significantly increases the storage requirements. To cope with
this, a very high video compression is applied, thus sacrificing
the image quality.

In the absence of a clear long-term tracking definition,
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much less attention has been paid to long-term performance
measures. The UAV20L [8] and [9] apply the average overlap
measure [7], a short-term criterion that does not account for
situation when the tracker reports target absence and favors
the trackers that report target positions for every frame. Tao et
al. [10] adapted this measure by assigning overlap of 1 when
the tracker correctly predicts the target absence. This value
is not comparable with tracker accuracy when the target is
visible which skews the overlap-based measure. Furthermore,
reducing the actual tracking accuracy and failure detection to
a single overlap score significantly limits the insight it brings.

Long-term tracker analysis requires including sequences,
which are much longer than those encountered in short-term
tracking evaluation. Target annotation in each frame thus
significantly increases the amount of manual labor compared
to short-term benchmarks. Recently, Mueller et al. [19] consid-
ered semi-automatic annotation of short-term sequences used
for training localization CNNs. They annotate a single frame
per-second and interpolate between them by a discriminative
correlation filter. Given a typical sequence frame-rate, this
means they manually annotate only every 25th frame. The
amount of annotation is reduced and the quality is acceptable
for training purposes, but it is not clear whether the interpo-
lation adds bias if such an approach is used for performance
evaluation.

Valmadre et al. [20] propose to completely avoid interpo-
lation and consider only one frame per-second. They argue
that sparse annotation is acceptable for long-term tracker
evaluation on long sequences. Their experiment on a short-
term dataset OTB100 [7] shows that evaluating at every
∼ 25th frame keeps the variance of their tracking performance
measure within reasonable bounds. Increasing the annotation
skipping length increases the variance, which could be ad-
dressed by increasing the number of sequences.

III. THE SHORT-TERM/LONG-TERM TRACKING SPECTRUM

A long-term tracker is required to handle target disappear-
ance and reappearance (Figure 1). Relatively few published
trackers fully address the long-term requirements, and some
short-term trackers address them partially. We argue that
trackers should not be simply classified as short-term or long-
term, but they rather cover an entire short-term–long-term
spectrum. The following taxonomy is used in our experimental
section for accurate performance analysis.

1) Short-term tracker (ST0). The target position is re-
ported for each frame. The tracker does not implement
target re-detection and does not explicitly detect occlu-
sion. Such trackers are likely to fail on the first occlusion
as their representation is affected by any occluder.

2) Short-term tracker with conservative updating (ST1).
The target position is reported for each frame. Target re-
detection is not implemented, but tracking robustness is
increased by selectively updating the visual model de-
pending on a tracking confidence estimation mechanism.

3) Pseudo long-term tracker (LT0). The target position
is reported only if the tracker believes the target is
visible. The tracker does not implement explicit target

re-detection but uses an internal mechanism to identify
and report tracking failure.

4) Re-detecting long-term tracker (LT1). The target po-
sition is reported only if the tracker believes the target
is visible. The tracker detects tracking failure and im-
plements explicit target re-detection.

The ST0 and ST1 trackers are what is commonly considered
a short-term tracker. Typical representatives from ST0 are
KCF [21], DSST [22], SRDCF [23], CSRDCF [24], BACF
[25] and CREST [26], which apply a constant visual model
update. Typical examples of ST1 are NCC [11], SiamFC [27]
and the current state-of-the-art short-term trackers MDNet
[28] and ECO [29]. All these trackers apply conservative
updating mechanisms, which makes them ST1 level. Many
short-term trackers can be trivially converted into pseudo long-
term trackers (LT0) by using their visual model similarity
scores at the reported target position. While straightforward,
this offers means to evaluate short-term trackers in the long-
term context.

The level LT1 trackers are the most sophisticated long-
term trackers, in that they cover all long-term requirements.
These trackers typically combine two components, a short-
term tracker and a detector, and implement an algorithm for
their interaction. The LT1 trackers originate from two main
paradigms introduced by TLD [30] and Alien [31], with
modern examples CMT [32], Matrioska [33], HMMTxD [34],
MUSTER [35], LCT [36], PTAV [37], and FCLT [38].

IV. LONG-TERM TRACKING PERFORMANCE MEASURES

A long-term tracking performance measure should reflect
the localization accuracy, but unlike short-term measures, it
should also capture the accuracy of target detection capabilities
(target absence prediction and target re-detection). The latter
is not addressed by the standard short-term tracking measures.
In detection literature [39], precision and recall measures
evaluate the detector by considering the amount of predicted
bounding boxes whose overlap with the ground truth bounding
boxes exceeds a pre-defined threshold. However, threshold-
dependent overlap measures do not fully reflect the tracking
accuracy, and should be avoided [4], [14]. In the following we
provide a new formulation of tracking precision and tracking
recall measures which are tailored for tracking domain and
avoid the deficiencies of their counterparts from the detection
literature. The new measures are rigorously compared to the
existing ones in Section VI-A.

Let Gt be the ground truth target pose, let At(τθ) be
the pose predicted by the tracker, θt the prediction certainty
score at time-step t and τθ be a classification threshold. If
the target is absent, the ground truth is an empty set, i.e.,
Gt = ∅. Similarly, if the tracker did not predict the target
or the prediction certainty score is below a classification
threshold i.e., θt < τθ, the output is At(τθ) = ∅. The
agreement between the ground truth and prediction is spec-
ified by their intersection over union Ω(At(τθ), Gt)

2. In the
detection literature, the prediction matches the ground truth if
the overlap Ω(At(τθ), Gt) exceeds a threshold τΩ. Given the

2The output of Ω(·, ·) is 0 if either of the two regions is ∅.
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two thresholds (τθ, τΩ), the precision Pr and recall Re are
defined as
Pr(τθ, τΩ) =

|{t : Ω(At(τθ), Gt) ≥ τΩ ∧At(τθ) 6= ∅}|/Np,
Re(τθ, τΩ) =

|{t : Ω(At(τθ), Gt) ≥ τΩ ∧Gt 6= ∅}|/Ng,

(1)

where | · | is the cardinality, Ng is the number of frames
with Gt 6= ∅ and Np is the number of frames with existing
prediction, i.e. At(τθ) 6= ∅. Note that Ng is defined by ground
truth and is constant for a selected sequence, while Np is a
function of the target prediction certainty threshold τθ.

In detection literature, the overlap threshold is set to 0.5
or higher, while recent work [4] has demonstrated that such
threshold is over-restrictive and does not clearly indicate a
tracking failure in practice. A popular short-term performance
measure [1], for example, addresses this by averaging perfor-
mance over various thresholds, which was shown in [14] to
be equal to the average overlap. Using the same approach3,
we reduce the precision and recall to a single threshold by
integrating over τΩ, i.e.,

Pr(τθ) =

∫ 1

0

Pr(τθ, τΩ)dτΩ (2)

=
1

Np

∑
t∈{t:At(τθ)6=∅}

Ω(At(τθ), Gt),

Re(τθ) =

∫ 1

0

Re(τθ, τΩ)dτΩ (3)

=
1

Ng

∑
t∈{t:Gt 6=∅}

Ω(At(τθ), Gt).

We call Pr(τθ) tracking precision and Re(τθ) tracking
recall to distinguish them from their detection counterparts.
Detection-like precision/recall plots can be drawn to analyze
the tracking as well as detection capabilities of a long-term
tracker (Figure 6). Similarly, a standard trade-off between the
precision and recall can be computed in form of a tracking
F-measure [39]

F (τθ) = 2Pr(τθ)Re(τθ)/(Pr(τθ) +Re(τθ)), (4)

and visualized by the F-score plots (Figure 6). Our primary
score for ranking long-term trackers is therefore defined as the
highest F-score on the F-score plot, i.e., taken at the tracker-
specific optimal threshold. This avoids manually-set thresholds
in the primary performance measure. Furthermore, it avoids
forcing a tracker to internally threshold its target presence
uncertainty and more fairly evaluates different trackers at their
optimal performance point.

Note that the proposed primary measure (4) for the long-
term trackers is consistent with the established short-term
tracking methodology. Consider an ST0 short-term tracking
scenario: the target is always (at least partially) visible and the
target position is predicted at each frame with equal certainty.
In this case our F-measure (4) reduces to the average overlap,
which is a standard measure in short-term tracking [1], [4].

3A detailed derivation is available in the supplementary material document.

A. Performance evaluation protocol

A tracker is evaluated on a dataset of several sequences
by initializing on the first frame of a sequence and run until
the end of the sequence without re-sets. The precision-recall
curve (2, 3) is calculated on each sequence and averaged into a
single plot. This guarantees that the result is not dominated by
extremely long sequences. The F-measure plot (4) is computed
from the average precision-recall plot. The evaluation protocol
along with plot generation was implemented in the VOT [4]
toolkit to automate experiments and thus reduce potential
human errors.

V. THE LONG-TERM DATASET (LTB50)

Table I quantifies the long-term statistics of the common
short-term and existing long-term tracking datasets. Target
disappearance is missing in the standard short-term datasets
except for UAV123 which contains on average less than one
full occlusion per sequence. This number increases four-fold
in UAV20L [8] long-term dataset. The recent TLP [9] dataset
increases the number of target disappearances by an order of
magnitude, but at a cost of increasing the dataset size in terms
of the number of frames by more than an order of magnitude,
i.e. target disappearance events are less frequent in TLP [9]
than in UAV20L [8], see Table I. Moreover, the videos are
heavily compressed with many artifacts that affect tracking.

TABLE I
DATASETS – COMPARISON OF LONG-TERM PROPERTIES: THE NUMBER OF
SEQUENCES, THE TOTAL NUMBER OF FRAMES, THE NUMBER OF TARGET

DISAPPEARANCES (DSP), THE AVERAGE LENGTH OF DISAPPEARANCE
INTERVAL (ADL), THE AVERAGE NUMBER OF DISAPPEARANCES IN

SEQUENCE (ADN). THE FIRST FOUR DATASETS ARE SHORT-TERM WITH
VIRTUALLY NO TARGET DISAPPEARANCES, THE LAST COLUMN SHOWS

THE PROPERTIES OF THE PROPOSED DATASET.

Dataset ALOV
300

OTB
100

VOT
2017

UAV
123

UAV
20L TLP LTB50

(ours)
# sequences 315 100 60 123 20 50 50
Frames 89364 58897 21356 112578 58670 676431 215294
DSP 0 0 0 63 40 316 525
ADL 0 0 0 42.6 60.2 64.1 52.0
ADN 0 0 0 0.5 2 6.3 10.5

In the light of the limitations of the existing datasets, we
created a new long-term dataset. We followed the VOT [4]
dataset construction paradigm (recently experimentally vali-
dated by other authors [40]) which states that the datasets
should be kept moderately large and manageable, but rich
in attributes relevant to the tested tracker class. We started
by including all sequences from UAV20L since they contain
a moderate occurrence of occlusions and potentially difficult
to track small targets. Five long sequences with challenging
targets were taken from [30]. We collected 19 additional
sequences from Youtube. The sequences contain larger targets
with numerous disappearances. To further increase the number
of target disappearances per sequence, we have utilized the re-
cently proposed camera view generator from omni-directional
dataset AMP [13]. Six additional challenging sequences were
generated from this dataset by controlling the camera such
that the target was repeatedly entering and leaving the field-
of-view.
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Fig. 2. The LTB50 dataset – a frame selected from each sequence. Name
and length (top), number of disappearances and percentage of frames without
target (bottom right). Visual attributes (bottom left): (O) Full occlusion, (V)
Out-of-view, (P) Partial occlusion, (C) Camera motion, (F) Fast motion, (S)
Scale change, (A) Aspect ratio change, (W) Viewpoint change, (I) Similar
objects. The dataset is highly diverse in attributes, target types and contains
many target disappearances.

The targets were annotated by axis-aligned bounding-boxes.
(i.e., visible parts). Each sequence is annotated by nine visual
attributes: full occlusion, out-of-view motion, partial occlu-
sion, camera motion, fast motion, scale change, aspect ratio
change, viewpoint change and similar objects. The LTB50 thus
contains 50 challenging sequences of diverse objects (persons,
car, motorcycles, bicycles, boat, animals, etc.) with the total
length of 215, 294 frames. Sequence resolutions range between
1280×720 and 290×217. Each sequence contains on average
10 long-term target disappearances, each lasting on average 52
frames. An overview of the dataset is shown in Figure 2.

VI. ANALYSIS OF PERFORMANCE MEASURES

A. Comparison with existing measures

Two threshold-free performance measures were recently
used for long-term tracking performance evaluation [8], [10],

[9]. The AUC measure is used in UAV20L [8]. As discussed in
Section II, this is a primary short-term measure from [1] that
computes average overlap between the tracker prediction and
ground truth bounding boxes. In recent work [10], [9] AUC
was adapted to account for target absence by assigning overlap
of 1 to frames in which the tracker correctly predicts the target
absence – which we denote by AUCmod. We experimentally
compare our long-term performance measures from Section IV
with AUC and AUCmod using the approach with theoretical
trackers introduced by Čehovin et al. [14].

The following four theoretical trackers were run on the
LTB50 to expose the differences between the tested perfor-
mance measures:
• Tgt,gt: Always reports the correct target position (the

ground truth), and reports uncertainty 0 when target is
visible and 1 when target is not visible.

• Tgt,co: Always reports the correct target position (the
ground truth), and reports constant uncertainty in all
frames.

• Tim,co: Reports a bounding box covering entire image in
all frames with constant uncertainty, resulting in non-zero
overlap in all frames with the target present. The optimal
operation point for this tracker is thus to report target
always present.

• Tlost: Reports a 1×1 bounding box in the top-left corner
and constant uncertainty in all frames, which is inter-
preted as if reporting target not visible in all frames.
In contrast to Tim,co, which always reports a non-zero
overlap, the overlap is always zero for this tracker, thus
the optimal operation point is obtained by reporting target
always lost.

Results are summarized in Figure 3. The AUC [1] measure
assigns equal scores to Tgt,gt and Tgt,co. This means it
does not distinguish between trackers that can detect target
absence and those that cannot. Consequently this measure
favors reporting the bounding box in every frame even if the
target is not present.

In contrast, the modified AUC, AUCmod from [10] and [9],
does distinguish between Tgt,gt and Tgt,co. But this measure
assigns a constant overlap 1 to all frames in which the target
absence is correctly predicted. This is not calibrated by an
average overlap when the target is present. Furthermore, since
the target absence prediction and localization are mixed into
a single score, it is unclear whether the high score values
are mostly due to accurate prediction of the target position
or the ability to correctly report target absence. For example,
AUCmod assigns an average overlap of 11% to tracker Tlost

even though it does not make a single correct prediction of the
target position. The basic AUC, on the other hand, correctly
assigns a score 0 to this tracker.

Like the AUCmod, the proposed tracking F-measure is
capable of distinguishing between Tgt,gt and Tgt,co. In con-
trast to AUCmod, the basic primary measures, tracking Preci-
sion/Recall, offer a clear interpretation of the reason for the
performance difference. The high tracking Precision of Tgt,gt

indicates a better target absence prediction compared to Tgt,co.
But both trackers equally accurately predict target position
when visible, which results in an equally high tracking Recall.
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Fig. 3. Tracking performance of the four trackers described in Section VI-A
evaluated by the proposed and existing performance measures. The success
rate plots corresponding to AUC and AUCmod are shown in the first two
plots, while the second two show the tracking F-measure and tracking
Precision/Recall graphs. The overall tracker scores are shown in parentheses
next to the tracker labels with the two values in the bottom-right plot showing
the precision and recall values.

Another example is the tracker Tlost. The tracking F-score is
zero, indicating a complete tracking failure and the Recall zero
means that the reason is inability to localize the target.

B. Robustness to annotation sparsity

Manual annotation of every frame in long-term sequences
requires a significant amount of manual labor, since these are
often an order of magnitude longer than short-term sequences.
An approach to reduce the labor is annotating every N -
th frame [20]. The amount of skipped frames is typically
constrained by the robustness of the performance measure.
We utilize densely annotated long-term sequences in LTB50
to test the behavior of the performance measures introduced
in Section IV with respect to the annotation sparsity.

A set of trackers described in Section VII-A was run on the
LTB50 dataset. The trackers were evaluated by computing the
tracking Precision, Recall and F-measure by considering every
N -th frame with N ∈ [1, 12, 25, 50, 100, 200]. This is equal to
annotating every 0.04s, 0.5s, 1s, 2s, 4s and 8s assuming a 25fps
frame rate. Figure 4 shows the behavior of the performance
measures with increasing annotation sparsity.

The tracking Precision/Recall deviate a bit at very high
annotation sparsity levels, but largely maintain the order of
trackers. A striking result is that the deviations in Preci-
sion/Recall appear to cancel out in tracking F-score, which
maintains extremely stable results over the whole range of
annotation sparsity levels.

Detailed performance analysis can be carried out with
annotations every 25 or 50 frames since the measure values
minimally differ from those obtained from dense annotations.
The annotation interval length of 50 frames is theoretically
supported by the average target disappearance period length
(which is 52 frames in our dataset), and means that annotating
the target position every 50 frames ensures that most of the
target disappearance events will be covered by at least one
annotation.

Note that situations in which a tracker fails for a very few
frames and recovers may not be detected if they occur in
between the consecutive annotations. If these are rare events,
they would not have affected the overall performance measure
even if they were detected due to averaging over a large
number of frames. However, if these occur frequently, they
will be detected due to non-regularity of failure intervals in real
world setups, and the performance measures will reflect such
behavior. This property is supported experimentally verified
in Figure 4 – the measures are stable even at sparsity levels
that significantly exceed the average disappearance period (52
frames).

Our results imply that sequences 50 times longer than
typical short-term sequences can be annotated with the same
amount of manual labor without losing analysis accuracy. If
only an overall performance analysis is required (tracking F-
measure) then the annotation may be even sparser, allowing
up to 200 times longer sequences at a moderate annotation
effort.

VII. LONG-TERM TRACKING EVALUATION

A. Evaluated trackers

An extensive collection including top-performing trackers
was complied to cover the short-term–long-term spectrum. In
total, twenty trackers summarized in Table II and Figure 9
were evaluated. We included eight long-term state-of-the-
art trackers with publicly available source code: (i) TLD
[30], which uses optical flow for short-term component and
normalized-cross-correlation for detector and a P-N learn-
ing framework for detector update. (ii) LCT [36] and (iii)
MUSTER [35] that use a discriminative correlation filter for
the short-term component and random ferns and keypoints,
respectively, for the detector. (iv) PTAV [37], that uses a
correlation filter for the short-term component and a CNN
retrieval system [44] for the detector. (v) FCLT [38], that
uses a correlation filter for both, the short-term component
and the detector. (vi) CMT [32], that uses optical flow for
the short-term component and key-points for the detector.
(vii) HMMTxD [34], that applies an ensemble of short-term
trackers and a keypoint-based detector. (viii) SiamRPN++ [41],
that uses a siamese network and a region proposal module
for target localization using dept-wise correlation. Target re-
detection is performed similarly as localization within an
enlarged search region. These trackers further vary in the
frequency and approach for model updates (see Table II).

In addition to the selected long-term trackers, we have
included a baseline NCC tracker [11] and recent state-of-the
art short-term trackers: the standard discriminative correlation
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Fig. 4. A simulation with sparsely sampled ground truth – every N -th frame (N = 1, 12, 25, 50, 100, 200) is considered in the computation of tracking
precision, recall and F-score. The primary measure, the F-score, stays extremely stable, even for a very sparse annotation.

TABLE II
EVALUATED TRACKERS ARE CHARACTERIZED BY THE SHORT-TERM COMPONENT AND A CONFIDENCE SCORE. LONG-TERM TRACKERS ARE IN

ADDITION CHARACTERIZED BY THE DETECTOR TYPE AND ITS INTERACTION WITH THE SHORT-TERM COMPONENT. MODEL UPDATE AND SEARCH
STRATEGIES ARE INDICATED. TRACKERS MARKED BY ∗ WERE PUBLISHED AS LT1 , BUT DID NOT PASS THE RE-DETECTION TEST. RESULTS FOR THE

RE-DETECTION EXPERIMENT ARE SHOWN IN COLUMNS DENOTED AS Redet. Success , I.E., THE NUMBER OF SEQUENCES WITH SUCCESSFUL
RE-DETECTION (OUT OF 50), AND Redet. Frames, I.E., THE AVERAGE NUMBER OF FRAMES BEFORE RE-DETECTION. COLUMNS DENOTED AS F, AUC

AND AUCM REPRESENT THE TRACING PERFORMANCE MEASURED BY TRACKING F-SCORE, AREA UNDER THE SUCCESS CURVE AND MODIFIED AREA
UNDER THE SUCCESS CURVE, RESPECTIVELY. THE LAST COLUMN (FPS) REPRESENTS AVERAGE TRACKING SPEED IN FRAMES PER SECOND.

Tracker S-L Detector Short-term
component

Interaction
Score Update Search Redet.

Success
Redet.
Frames F AUC AUCM FPS

SiamRPN++
[41]

LT0
CNN

(siam.) CNN Score: max corr. Never Search window
(enlarged region) 1 42.0 0.58 0.59 0.56 12.6

DIMP
[42]

ST1 - CF (deep.) Score: max. corr.
When confident
(hard negatives)

Search window
(enlarged region) 0 - 0.57 0.55 0.57 29.1

FCLT
[38]

LT1 CF (reg.) CF (reg.) Resp. thresh.,
Score: resp. quality

ST: when confident
LT: mix ST + LT

Entire image
(correlation + motion) 50 76.8 0.41 0.40 0.40 6.3

MDNet
[28]

ST1 - CNN -
Score: CNN score

When confident
(hard negatives)

Random
sampling 0 - 0.39 0.36 0.38 0.9

SiamFC
[27]

ST1 - CNN -
Score: max. corr. Never Search window

(enlarged region) 0 - 0.37 0.32 0.36 22.4

ECO
[43]

ST1 - CF
(deep f.)

-
Score: max. corr.

Always
(clustering)

Search window
(enlarged region) 0 - 0.30 0.29 0.31 7.2

HMMTxD
[34]

LT1
Keypoints

(static)
Flow + CF +

ASMS
HMM

Score: # keypoints
ST: when confident
LT: when confident

Entire image
(keypoint matching) 46 1.7 0.30 0.30 0.28 2.1

CREST
[26]

ST0 - CNN -
Score: max. corr.

Always
(backprop)

Search window
(enlarged region) 0 - 0.29 0.26 0.29 0.3

CSRDCF
[24]

ST0 - CF -
Score: max. corr.

Always
(exp. forget.)

Search window
(enlarged region) 0 - 0.28 0.23 0.28 7.9

ECOhc
[43]

ST1 - CF -
Score: max. corr.

Always
(clustering)

Search window
(enlarged region) 0 - 0.28 0.26 0.29 52.5

PTAV∗

[37]
LT0

Siamese
network

CF
(fDSST)

Conf. thresh,
const. verif. interval
Score: CNN score

ST: always,
LT: never

Search window
(enlarged region) 1 35.0 0.28 0.24 0.26 4.5

BACF
[25]

ST0 - CF -
Score: max. corr.

Always
(exp. forget.)

Search window
(enlarged region) 1 7.0 0.27 0.26 0.29 15.9

MUSTER
[35]

LT1
Keypoints

(SIFT) CF F-B, RANSAC
Score: max. corr.

ST: every frame
LT: when confident

Entire image
(keypoint matching) 41 0.0 0.25 0.23 0.27 0.8

TLD
[30]

LT1
Random

fern Flow P-N learning
Score: conser. sim.

Positive,
negative samp.

Entire image
(cascade) 18 0.0 0.25 0.18 0.26 10.0

DSST
[22]

ST0 - CF -
Score: max. corr.

Always
(exp. forget.)

Search window
(enlarged region) 0 - 0.23 0.20 0.24 8.1

KCF
[21]

ST0 - CF -
Score: max. corr.

Always
(exp. forget.)

Search window
(enlarged region) 0 - 0.23 0.22 0.24 55.2

SRDCF
[23]

ST0 - CF -
Score: max. corr.

Always
(exp. forget.)

Search window
(enlarged region) 0 - 0.23 0.21 0.24 3.1

LCT∗

[36]
LT0

Random
fern CF k-NN, resp. thresh.

Score: max. corr.
When

confident
Search window

(enlarged region) 0 - 0.22 0.19 0.22 16.0

CMT
[32]

LT1
Keypoints

(static)
Keypoints

(flow)

F-B, clustering,
correspondencies

Score: # keypoints

ST: always
LT: never

Entire image
(keypoint matching) 42 0.0 0.20 0.14 0.22 22.3

NCC ST1 - Correlation -
Score: max. corr. Never Search window

(enlarged region) 0 - 0.13 0.11 0.14 41.3

filters KCF [21] and DSST [22], four recent advanced versions
SRDCF [23], CSRDCF [24], BACF [25], ECOhc [43] and
the top-performer on the OTB [1] benchmark ECO [43].
Two state-of-the-art CNN-based top-performers from the VOT
[45] benchmark SiamFC [27] and MDNet [28] and a state-
of-the-art CNN-based tracker CREST [26] were included as
well. For a complete analysis we include the most recent

short-term tracker DIMP [42], which is currently the top-
performing tracker on the majority of the short-term tracking
benchmarks. All these short-term trackers were modified to
be LT0 compliant, i.e., able to report the target absence. For
each tracker, the score reflecting an internal belief of the target
presence was used for the target prediction certainty score.
For consistency, the same ”type” of score was reported for
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5 x initialization frame 195 x test frame

Fig. 5. Re-detection experiment – the artificially created sequence structure by
repetition, padding and target displacement. Please see the text for experiment
details.

all trackers from the same group of trackers e.g., maximum
correlation response for all correlation filter based trackers. All
trackers were integrated in the VOT [4] toolkit for automatic
evaluation.

B. Re-detection experiment

An experiment was designed to position the tested trackers
on the LT/ST spectrum, and in particular to verify their
image-wide re-detection capability. Artificial sequences were
generated from the initial frame of each sequence in our
dataset. The initial frame was placed into the top-left corner of
a zero-initialized image, which is three times wider and higher
than the original image (Figure 5). The artificial sequences
start with five copies of the enlarged frame. For the remainder
of the sequence, the target region was cropped from the
initial image and copied to the bottom right corner of a zero-
initialized frame. A tracker was initialized in the first frame
and we measured the number of frames required to re-detect
the target after position change.

Results are summarized in Table II (columns Redet.
Success/Frames). Trackers MDNet, ECO, ECOhc, SRDCF,
SiamFC, CREST, CSRDCF, KCF, DSST and NCC never re-
detected the target, which confirms their short-term design.
The BACF tracker re-detects the target in one sequence by
coincidence (random drift) and it is not the result of a re-
detection mechanism. The only tracker that always re-detected
the target was FCLT, while HMMTxD, MUSTER, CMT and
TLD were successful in most sequences – this result classifies
them as LT1 trackers. The difference in detection success
come from the different detector design. FCLT and TLD both
train template-based detectors. The good performance of FCLT
likely comes from the efficient discriminative filter training
framework of the FCLT detector. The keypoint-based detectors
in HMMTxD, MUSTER and CMT are similarly efficient,
but require sufficiently well textured targets. Interestingly, the
re-detection is immediate for MUSTER, CMT, HMMTxD
and TLD, while FCLT requires on average 77 frames. This
difference comes from the dynamic models. MUSTER, CMT,
HMMTxD and TLD apply a uniform spatial prior in the
dynamic model in the detector phase over the entire image,
while the FCLT applies a random walk model that gradually
increases the target search range with time.
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Fig. 6. Long-term tracking performance on the LTB50 dataset. The average
tracking precision-recall curves (left), the corresponding F-measure curves
(right) – F as a function of prediction certainty linearly rescaled for each
tracker; 0 - the minimum over all sequences output by a given tracker, 100 -
the maximum. Tracker labels are sorted according to F-scores, i.e., F-measure
maxima.

Surprisingly, two recent long-term trackers, LCT and PTAV
nearly never successfully detected the target. A detailed in-
spection of their source code revealed that these trackers do
not apply their detector to the whole image, but rather a
small neighborhood of the previous target position, which
makes these two trackers a pseudo long-term, i.e., LT0 level.
A similar property can be observed for SiamRPN++ tracker,
which fails in image-wide target re-detection since the search
region is enlarged to a fixed size, smaller than the image,
during re-detection.

C. Overall performance

The overall performance on the LTB50 dataset is summa-
rized in Figure 6. Ranked highest are the most recent trackers
SiamRPN++ and DIMP (ST1). SiamRPN++ (LT0) is a long-
term tracker with a deep siamese network as a feature extractor
and a region-proposal module. This tracker does not update the
visual model to prevent model contamination and compensates
by using deep rich feature representation. DIMP is an ST1

tracker which formulates discriminative filter learning, similar
as DCFs, within a framework of CNNs. The tracker applies a
large search region, and an improved discriminative training
by selective updates and hard negative mining – all of which
contribute to stable long-term tracking. Third-ranked tracker is
FCLT, an LT1 class tracker, which uses discriminative correla-
tion filters on hand-crafted features for short-term component
as well as detector in the entire image. Three short-term ST1

class CNN-based trackers are following: MDNet, SiamFC and
ECO. These implement different mechanisms to deal with
occlusion. MDNet applies very conservative updates (similar
as DIMP), SiamFC does not update the model at all and ECO
applies clustering-based update mechanism to prevent learning
from outliers. SiamFC, ECO and MDNet search a fairly large
region which is beneficial for target re-detection.

Another LT1 long-term tracker, HMMTxD, achieves com-
parable performance to ECO. It uses an ensemble of short-
term trackers with weak visual models, and performs image-
wide target re-detection. Two long-term trackers CMT (LT1)
and LCT (LT0) perform the worst among the tested trackers.
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The CMT entirely relies on keypoints, which perform poorly
on non-textured targets. The relatively poor performance of
LCT is likely due to a small search window and poor detector
learning. This is supported by the fact that LCT performance is
comparable to KCF, a standard correlation filter, also used as
the short-term component in LCT. The performance of short-
term trackers ST0 class trackers does not vary significantly.

D. Attribute evaluation

Figure 7 shows tracking performance with respect to nine
visual attributes from Section V. Long-term tracking is mostly
characterized by performance on full occlusion and out-of-view
attributes, since these require re-detection. Top performance
is achieved by SiamRPN++ (LT0) and DIMP (ST1) due to
a stable discriminative target representation, which includes
robust updating in DIMP and no updating in SiamRPN++, and
relatively large search regions. The FCLT (LT1 class) achieves
good performance, which is likely due to the efficient learning
of the detector component. Another LT1 tracker, HMMTxD,
performs comparably to the best short-term trackers (SiamFC
and MDNet), while the CMT, TLD and MUSTER perfor-
mance is lower due to a poor visual model.

A highly challenging attribute is fast motion which is
related to long-term re-detection combined with blurring. Top
performance is obtained by trackers with a relatively large
search range and powerful deep features (SiamRPN++ and
DIMP).

Another attribute specific for long-term tracking is viewpoint
change which includes video cuts and camera hand-overs.
Top-performing trackers at this attribute are SiamRPN++ and
DIMP, demonstrating that their deep target representation is
powerful enough to robustly localize the target even under
a different viewing angle. Other well-performing trackers at
this attribute are SiamFC and MDNet, which indicates that
in most of these viewpoint changes the target did not move
significantly in image coordinates, and moderate search range
sufficed in target re-detection. The result also shows that the
target appearance did change and was well addressed by the
deep features.

The similar objects attribute exposes fine-grained discrim-
ination capability between the tracked object and visually
similar objects in the vicinity. Top performance is achieved
by DIMP, which means that the model updating is robust
enough to capture slight differences between targets. The
second-best tracker, SiamRPN++, on the other hand does not
update the model, but rather applies powerful discriminatively
trained features. The excellent performance of the third-best
tracker, MDNet, can be likely attributed to the use of hard-
negative mining in the visual model update and a moderately
sized search range. Another well performing tracker is FCLT.
In contrast to MDNet, this tracker performs image-wide re-
detection, which increases the probability of drifting to another
object, even if the object is far away. These false detections
are mitigated by the motion model, that gradually increases the
effective detection range after localization becomes uncertain.
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Fig. 7. Average per-tracker F-scores for each visual attribute. Average F-
score of each attribute is shown at the top-left corner. The most challenging
attributes are fast motion, full occlusion and out-of-view.

E. Influence of disappearance frequency

We divided the sequences of LTB50 into groups according
to the number of target disappearances: (Group 1) over ten
disappearances, (Group 2) between one and ten disappearances
and (Group 3) no disappearances. Per-sequence F-scores are
summarized in Figure 8.

Group 1 results: Most short-term trackers, except the recent
DIMP, performed poorly due to lack of target re-detection.
Long-term trackers generally perform well, but there are
differences depending on their structure. For example, the
“following” and “liverrun” sequences contain cars, which only
moderately change the appearance. SiamFC does not adapt
the visual model and is highly successful on these sequences.
The LCT generally performs poorly, except for the “yamaha”
sequence in which the target leaves and re-enters the view at
the same location. Thus the poor performance of LCT is due to
a fairly small re-detection range. MDNet, CREST and SiamFC
perform moderately well, despite the fact that they are short-
term trackers. A likely reason is their highly discriminative
visual features (CNNs) and a relatively large target localization
range.

Group 2 results: Performance variation comes from a mix
of target disappearance and other visual attributes. However,
in “person14” the poor performance is related to a long-
lasting occlusion at the beginning, where most trackers fail.
Only a few long-term trackers (SiamRPN++, FCLT, MUSTER,
HMMTxD and TLD) overcome the occlusion and obtain
excellent performance.

Group 3 results: The performance of long-term trackers
does not significantly differ from short-term trackers since
the target is always visible. The strength of the features and
learning in visual models play a major role. These sequences
are least challenging for all trackers in our benchmark.

VIII. TRACKER ARCHITECTURE EVALUATION

A. Overall architecture analysis

We analyze contributions of architectural choices important
for successful long-term tracking by categorizing the tested
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Fig. 8. Target disappearance analysis: The plots show per-sequence F-scores for all trackers. Sequences are sorted, left-to-right, top-to-bottom, by the number
of target disappearances, i.e. the largest number at top-left. Red label: (> 10) disappearances, green: (1− 10) disappearances, blue: (0) disappearances.

trackers along the following four aspects: (i) detector design,
(ii) short-term component design, (iii) features used and (iv)
visual model adaptation strategy. To aid interpretation, we
generate a connection plot Figure 9 where each tracker is
connected to the specific choice of the four design aspects
thus visualizing a design trend by color-coding.
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Fig. 9. The connection plot visualizing the tracker architectural choices. Each
tracker is connected to at least one architectural choice in each of the four
components of a long-term tracker (detector, short-term component, features
and update strategy). The connections are color coded by the tracking F-score
on LTB50 dataset with yellow indicating high values and blue indicating low
values. The architecture of the trackers is analyzed in Section VIII-A.

Detector design: The results show that CNN-based detec-
tors consistently deliver promising performance. Correlation

filters are widely used in short-term trackers, but are generally
not used for image-wide detection, except for in the FCLT.
The plot indicates that deep CNN-based detectors might
be a very promising research direction in long-term tracker
design, but they require special hardware (GPU). Another
promising direction in long-term tracker design are fast DCF-
based detectors like the one used in FCLT which does not
require a GPU. The quality of keypoint-based detectors varies
significantly among the trackers. The benefit lies in potential
to re-detect target even under a similarity or affine transform,
but a common drawback is the inability to detect small or
homogeneous targets.

Short-term component: The most promising design
choices for the short-term component follow the trend in state-
of-the-art short-term trackers. The connection plot indicates
that CNN-based and DCF-based methods are most successful
short-term design choices.

Visual features: Visual models with features based on
CNN generally achieve improved performance over hand-
crafted features. The reason is likely in discriminative capacity
of the pre-trained networks. A drawback is that these fea-
tures typically entail significant computational resources and
dedicated hardware (i.e., GPU). On the other hand, robust
long-term tracking is also feasible by hand-crafted features
combined with a well-designed re-detection strategy or update
mechanism (e.g., FCLT).

Adaptation strategy: In long-term tracking scenarios, the
target may leave the field of view or become occluded for
longer periods. Constant updating irreversibly corrupts the
visual model leading to drift and failure and reduces the
potential for target re-detection. Conservative updating such
as implemented in MDNet, DIMP or FCLT appears to be the
best strategy. An extreme conservative update strategy, i.e.,
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no update at all, appears to work as well, but this requires
highly expressive features such as localization-trained CNN
in SiamFC and SiamRPN++.

B. Importance of re-detection strategy
We further explore the importance of re-detection strategy

by the following experiment. All tracker outputs were modified
to report a constant uncertainty, which was treated as if the
tracker is always reporting the target as present. Tracking
Recall was computed, which we denote by Re. Then for each
tracker, all overlaps after the first failure (i.e., overlap drops to
zero) were set to zero and the tracking Recall was re-computed
(Re0).

Figure 10 shows differences between the two recalls (i.e.,
Re − Re0). Large values indicate greater failure recovery
capabilities of the trackers. SiamRPN++, FCLT, HMMTxD
and TLD most often re-detected the target. Surprisingly, the
differences in tracking Recalls of three short-term trackers
DIMP, MDNet and SiamFC are very large, which indicates
that these two trackers indeed posses long-term properties.
There are two probable explanations: (i) the trackers posses
a large search region which enables target re-detection or (ii)
the trackers posses efficient visual model update mechanism
that prevents visual model corruption during target loss and
they eventually drift back to the target.

Additional analysis of the tracking performance was carried
out to determine the reason for the apparent long-term proper-
ties. Let oi denote an overlap at i-th frame of a sequence. We
identified the pair of frames where oi−1 = 0 and oi > 0 which
is a point at which the tracker re-detects the target. Euclidean
distance was computed between the predicted bounding box
centers in these frames. We expect that large distances indicate
large target search ranges and compute the mean value of the
ten percent of largest Euclidean distances as an indicator of
the recorded search range size.

The results are shown in Figure 10. The search range
size of MDNet and SiamFC are comparable to other short-
term trackers. DIMP has a bit larger search range, but still
significantly smaller than the search range of long-term track-
ers. This means that the key factor for their excellent long-
term tracking performance compared to the other short-term
trackers is the visual model. Both of these trackers use pre-
trained CNN-based features. DIMP and MDNet updates the
visual model only on frames where tracking is considered
reliable while SiamFC does not update the visual model at all.
Both mechanisms prevent training from incorrect examples,
which enables eventual re-detection once the target gets close
to the current tracker prediction, even though the search range
is not the whole image. Long-term trackers FCLT, TLD,
CMT and HMMTxD have the largest search range, which
confirms the image-wide target re-detection ability tested in
Section VII-B. SiamRPN++, MUSTER and PTAV have a
moderately large search region, while LCT has the smallest
search range among all long-term trackers.

C. Impact of visual model error accumulation
Visual model update strategy plays a central role in drift

prevention, which is crucial in tracking over long periods.
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Fig. 10. The red graph shows results of the re-detection search range size
experiment (above). Higher values indicate a larger search range. The blue
graph (below) shows the difference in tracking Recall between the original
tracking result and the one with all overlaps set to zero after the first failure.
Large values indicate increased influence of the re-detection.
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long sequences due to error accumulation in the visual model and are shown in
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length. Note that the error increases for all trackers except from TLD, that
learns from experience and actually decreases the error.

We designed the following experiment to evaluate drifting,
which is not caused by target disappearance. Based on the
disappearance frequency analysis from Section VII-E, we
selected eleven long sequences from LTB50 in which the
target never disappears and extended them by looping forward
and backward five times. This set of extended sequences thus
contains 302,330 frames with an average sequence length of
27,485 frames.

The trackers were re-run on this dataset and the tracking
Recall was computed with the same tracker output modifica-
tion to a constant value as in Section VIII-B. Since the target
never leaves the field of view and the tracker always reports
the target, the tracking Recall is equivalent in this case to the
average overlap on all frames (see Section IV).

The results are shown in Figure 11. The highest tracking
recall is achieved by DIMP (ST1), SiamRPN++ (LT0), two
ST1 short-term trackers MDNet, ECO, an ST0 tracker BACF
and an LT1 long-term tracker FCLT. Top positions are not
dominated by long-term trackers in part because the target is
always present and false activations of the detector during un-
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certain target localization periods may lead to tracker jumping
to a location away from the target, which reduces performance.

Performance drop is smallest for TLD, HMMTxD, CMT,
CREST and SiamFC. The CMT fails early on in the original
sequences, which explains the apparently small performance
drop. CREST applies end-to-end updating of all parameters
in a CNN with small learning rate, which leads to robust
tracking in situations when the target is always visible. The
small performance drop in SiamFC is likely due to the fact
that this tracker does not update the visual model. Combined
with the deep features, this proves as a robust strategy to
reduce visual model contamination and leads to a successful
tracking. Interestingly, the recall actually increases for TLD
and HMMTxD as the sequences are looped, which is consis-
tent with the observations in the original paper [30]. TLD
applies P-N learning, a conservative form of learning that
retrospectively expands the visual model with new training
examples. The longer the target is observed, the stronger
the visual model becomes. Similarly, the HMMTxD uses
combination of feature-based detector, which is trained only
in the initial frame and set to high precision mode, that guides
the on-line learning of the hidden Markov model. The HMM
encodes the relationship of the performance of individual
trackers and their confidences using Baum-Welch algorithm.
This combination enables choosing, on-the-fly, which tracker
should be used in every frame and improves over time. The
selective update strategies from MDNet and LCT, which mix
short-term and long-term updates also appear beneficial – MD-
Net, for example, actually keeps track of appearance samples
from a longer time-scale and uses these in combination with
a local hard negative mining in the model update.

The largest performance drop is observed for the long-
term trackers PTAV and FCLT and the short-term trackers
CSRDCF and ECOhc. There are several reasons for these
performance drops. All four trackers use a DSST [22] scale
estimation method. We observed that the scale at these trackers
gradually drifts in extremely long sequences. The reason might
be that DSST scale estimation relies very much on the target
localization accuracy. Inaccurate localization leads to incorrect
scale estimation, and gradual error accumulation from constant
scale updates further reduces the localization accuracy, leading
to drift.

The long-term FCLT and PTAV are affected by false acti-
vations of their detector, which in some cases leads to tracker
jumping off the target. FCLT updates the detectors over several
scales only during certain tracking periods and eventually re-
detects the target in most cases. PTAV applies a CNN instance-
based object detector without updates. The strength of this
detector is that it generalizes well enough to detect the target
even under deformation. On the other hand, this generalization
leads to failure when similar objects are located in the target
vicinity. This is an obvious reason in the bike1 sequence where
the detector jumps to another bicyclist.

There is a significant difference in performance drops of
ECO and ECOhc, even though they both use the same visual
model decontamination strategy during updates. Part of the dif-
ference can be attributed to different scale estimation strategies
these two trackers use. ECO applies the tracker over several

scales, while ECOhc applies the DSST on the estimated target
position. Another significant difference is that ECO applies
deep features, while ECOhc uses only HOG and Colornames.
Therefore the longer tracking periods observed in ECO might
be likely due to deep features and greedy scale search.

IX. DISCUSSION AND CONCLUSION

A new long-term single-object tracking benchmark was
presented. A new short-term/long-term tracking taxonomy that
predicts performance on sequences with long-term properties
was introduced. The taxonomy considers (i) the target absence
prediction capability, (ii) the target re-detection strategy and
(iii) the visual model update mechanism.

A new long-term tracking performance evaluation method-
ology which introduces new performance measures – tracking
Precision, Recall and F-score – is proposed. These measures
extend the detection analysis capabilities to tracking in a
principled way and theoretically link the short-term and long-
term tracking problem. Even though the proposed measures
have been proposed for single-target tracking, multi-target
tracking might benefit from their probing power as well.
However, we leave such extensions for future work.

A new dataset (LTB50) of carefully selected sequences is
constructed, with a significant number of target disappearances
per sequence to emphasize long-term tracking properties. Our
experiments in Section VII-E indicate that target disappearance
is in fact the most challenging aspect of long-term tracking.
The diversity of the dataset has been ensured by including a
number of target examples typical for long-term tracking in
a variety of environments. Sequences are annotated with nine
visual attributes which enable in-depth analysis of trackers.
Seven long-term trackers and eleven state-of-the-art short-
term trackers were categorized using the new taxonomy and
analyzed using the proposed methodology and the dataset.

Comparison with existing performance measures using theo-
retical trackers (Section VI-A) shows that the proposed track-
ing Precision, Recall and F-score outperform existing mea-
sures, distinguish well between different tracking behaviors
and facilitate its interpretation. Furthermore, these measures
are highly robust (Section VI-B) allowing detailed analysis
with only every 50th frame annotated. The overall ranking
based on the primary measure is even more robust allowing
even sparser annotations (e.g., every 200th frame).

The evaluation and analysis covers a comprehensive collec-
tion of long-term trackers. According to the overall analysis
(Section VII-C), the best performance is obtained by a LT0

long-term tracker SiamRPN++ [41], which uses a siamese
deep network with a region proposal module for target local-
ization. Interestingly, SiamRPN++ does not update the visual
model at all, which indicates that pre-trained features are pow-
erful enough to cope to some extent with the long-term target
appearance variation. On the other hand, the second-ranked
tracker DIMP [42] (ST1 level) does apply updating by opti-
mizing the localization filter within a deep CNN framework,
but applies robust update mechanism to prevent long-term
contamination of the visual model. The third rank is obtained
by a LT1 long-term tracker FCLT [38]. This tracker applies
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discriminative correlation filter as the short-term component as
well as for detector. It applies updating of the visual models
at various temporal scales and uses the correlation output for
predicting target absence. Similar as DIMP is MDNet [28],
which is a CNN-based tracker trained for the tracking task. It
applies hard-negative mining and conservative updating of a
few top-layer CNN features. Attribute analysis (Section VII-D)
indicates that full occlusions and out-of-view disappearances
are among the most challenging attributes, followed by similar
objects and viewpoint change. The analysis also shows that
the LTB50 dataset is challenging, the best tracker achieves
the average F-score of 0.58, leaving room for improvement.

Further insights are obtained by analyzing architecture de-
signs of the long-term trackers (Section VIII). CNN-based
detectors consistently deliver improved performance, which
is likely due to their expressive power of robustly localizing
the target even under moderate appearance changes. However,
appearance generalization may come at a cost when visually
similar objects are located in the same scene. In these cases
the CNN features may not distinguish between the different
objects, leading to tracking the wrong target (Section VIII-C).
Even though discriminative correlation filters are not widely
used for detectors, results show that careful learning e.g.,
[38], [42] makes them an excellent choice due to speed and
robustness. We expect to see many long-term trackers adapt
these in future. Keypoint-based detectors can potentially detect
the target under similarity transform e.g., [35], [34], but require
textured targets and sufficient resolution, which makes them
brittle in practice.

The re-detection experiments from Section VII-B and Sec-
tion VIII-B show that most successful re-detection strategies
are those used in FCLT [38], HMMTxD [34] and TLD
[30]. Results in Section VIII-B also show that re-detection
quality largely depends on the visual model update strategy.
Conservative updates [27] and hard-negative mining [28] show
promise. These techniques are crucial for tracking on very long
sequences even if the target is always visible (Section VIII-C),
since they largely reduce the tracking drift. This finding opens
an opportunity for improving long-term tracking by consider-
ing best practices in visual features and model updating from
short-term trackers.

Scale estimation methods play an important role in tracking
drift. A popular approach is to first localize the target and
then estimate the scale e.g., by [22], considering only a single
position. Trackers with this technique typically fare much
worse than those that greedily localize the target on several
scales. The reason is that inaccurate localization leads to
poor scale estimation, which consequently leads to poorer
localization. On long sequences, the errors accumulate in the
visual model, resulting in drift.

All tested trackers and performance evaluation methodology
have been integrated in the VOT toolkit [4] and will be
made publicly available to the research community. We believe
that this, along with the evaluation methodology and detailed
analysis presented in this paper, will significantly impact the
field of long-term tracking from the point of dataset con-
struction with extremely long sequences, performance analysis
protocols as well as long-term tracker designs.
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APPENDIX

PERFORMANCE MEASURES DERIVATION DETAILS

This section provides a detailed derivation of the primary
performance measures, tracking Precision and tracking Recall,
introduced in Section IV of the main paper. The derivation
closely follows the proof from [14], which states that an area-
under-the-curve measure, AUC [1], equals the average overlap
between the per-frame bounding boxes reported by the tracker
and those from the ground truth.

We start with deriving the tracking precision, which is
defined as

Pr(τθ, τΩ) = |{t : Ω(At(τθ), Gt) ≥ τΩ ∧At(τθ) 6= ∅}|/Np,

where |·| is the set cardinality, and Np is the number of frames
with existing prediction, i.e. At(τθ) 6= ∅. To maintain the same
notation as in [14], we define φt = Ω(At(τθ), Gt) and as a τθ
is fixed and will be omitted for the purpose of derivation. This
means that we have a set of per-frame bounding box overlaps
for the subset of frames where At(τθ) 6= ∅, in total Np frames.
As in [14], we assume that the per-frame overlaps are ordered
by size in an ascending order and φ0 = 0, i.e.

0 = φ0 ≤ φ1 ≤ · · · ≤ φNp .

Let P (τΩ) = |{j : φj ≥ τΩ}| be the number of overlaps
greater than τΩ. A central part of the derivation is showing that
averaging over a particular set of per-frame overlaps equals
integration over P (τΩ)

Np
, i.e.,

1

Np

Np∑
i=1

φi =
1

N

∫ 1

0

P (τΩ)dτΩ.

Proof: Function P is a step function, i.e., is constant on the
interval between φi and φi+1). Therefore its integral I is

I =

Np−1∑
i=0

P (φi)(φi+1 − φi).

The sum can be reorganized in the following way:

I = P (φ0)(φ1−φ0)+P (φ1)(φ2−φ1)+P (φ2)(φ3−φ2) + . . .

= φ1P (φ0)−φ0P (φ0)+φ2P (φ2)−φ1P (φ1)+φ3P (φ3)− . . .
= −φ0P (φ0)+φ1(P (φ0)−P (φ1))+φ2(P (φ1)−P (φ2)) · · ·
= 0 · P (φ0) + φ1 · 1 + φ2 · 1 + · · · (5)
= φ0 + φ1 + φ2 + · · · (6)

=

N∑
i=1

φi.
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In (5) we have assumed that the shift between the two
consequential values of P (τΩ), i.e. P (φi) − P (φi+1) equals
to 1, that is true if all φi are different. If k consequential φi
are equal then the corresponding k− 1 shifts are 0, while the
last one is k. However, in (5) we add (φi · 1) k times. This
completes the proof. �

Derivation of the tracking recall follows the same procedure,
the only difference is that the subset of frames is defined by
the groundtruth, i.e. frames where Gt 6= ∅.

TRACKING SPEED ANALYSIS

Tracking speed is a decisive factor in many applications. We
provide a detailed analysis by three measures4: (i) initialization
time, (ii) maximum per-frame time and (iii) average per-frame
time. The initialization time is computed as the initial frame
processing time averaged over all sequences. The maximum
per-frame time is computed as the median of the slowest 10%
of the frames averaged over all sequences. We also measure
average speed by averaging over all frames in the dataset.
All measurements are in milliseconds per frame (mpf). The
experiments were carried out at a standard desktop computer
with 3.4GHz 6700-i7 CPU, 16GB of RAM and NVidia GTX
1060 GPU with 6GB of RAM.

The tracking speeds are reported in Figure 12 with trackers
categorized into three groups according to the average speed:
fast (> 15fps), moderately fast (1fps-15fps) and slow (< 1fps).
The fastest tracker is KCF due to efficient model learning and
localization by fast Fourier transform. The slowest methods are
CNN-based MDNet and CREST due to the time-consuming
model adaptation and MUSTER due to slow keypoint extrac-
tion in the detection phase. Several trackers exhibit a very
high initialization time (in order of several thousand mpf).
The delay comes from loading CNNs (SiamFC, ECO, PTAV,
MDNet, CREST) or pre-calculating visual models (ECOhc,
CMT, TLD, SRDCF, DSST).

Ideally, the tracking speed would be approximately constant
over all frames guaranteeing completion within a fixed time
delay. Small differences between the maximum per-frame
and average time indicate stability. This difference is the
largest for the following trackers: ECOhc and ECO (due to
a time-consuming update every five frames), FCLT (due to re-
detection on the entire image, which is moderately slow for
large images), PTAV (due to the slow CNN-based detector)
and MDNet (due to the slow update during reliable tracking
period).

COMPARISON OF PERFORMANCE MEASURE RANKINGS

To gain further insights into the proposed primary measure,
i.e., tracking F-score (Section IV in the paper), we compare
it with the existing measures – area under success rate curve
(AUC [1]) and to the modified AUC (AUCmod [9], [10]).

Since area under the curve is based on the overlap measure,
the AUC is defined only on frames where target is visible
(overlap between a predicted region and an empty region is

4Due to the limitations of the source code of MUSTER provided by the
authors we were able to calculate the average speed, but not initialization and
maximum per-frame times.
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Fig. 12. Tracking speed. Trackers are grouped into three classes: fast
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mum (blue). Average speed measured as frames-per-second is shown next to
the position of average mpf. Note that logarithmic scale is used on the y-axis.

not defined). The modified AUC extends the basic measure
so that it re-defines the definition of overlap in the following
way: when target is not visible the overlap is 1 if a tracker
predicts that target is not visible and the overlap is zero if
tracker makes a prediction of the position.

Figure 13 shows the values of the different performance
measures computed for all trackers tested in the paper. The
results show that the AUC measure punishes trackers like
TLD and CSRDCF, which are ranked higher according to the
F-score. The reason is that AUC does not measure ability
to predict target absence. Observe that the performance of
most of the short-term trackers increases under the AUCmod,
compared to AUC, while the long-term trackers with a strong
re-detection capability (SiamRPN++, FCLT, HMMTxD) have
lower AUCmod than AUC. This result supports our observation
that AUCmod is not tailored well for exposing all long-term
tracking capabilities, as it favours trackers which are more
successful in predicting target absence than re-detecting the
target and tracking longer.
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