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Abstract—Automatic detection and recognition of traffic signs
plays a crucial role in management of the traffic-sign inventory.
It provides an accurate and timely way to manage traffic-sign
inventory with a minimal human effort. In the computer vision
community the recognition and detection of traffic signs is a
well-researched problem. A vast majority of existing approaches
perform well on traffic signs needed for advanced driver-
assistance and autonomous systems. However, this represents a
relatively small number of all traffic signs (around 50 categories
out of several hundred) and performance on the remaining set
of traffic signs, which are required to eliminate the manual
labor in traffic-sign inventory management, remains an open
question. In this paper, we address the issue of detecting and
recognizing a large number of traffic-sign categories suitable
for automating traffic-sign inventory management. We adopt a
convolutional neural network (CNN) approach, the Mask R-CNN,
to address the full pipeline of detection and recognition with
automatic end-to-end learning. We propose several improvements
that are evaluated on the detection of traffic signs and result
in an improved overall performance. This approach is applied
to detection of 200 traffic-sign categories represented in our
novel dataset. Results are reported on highly challenging traffic-
sign categories that have not yet been considered in previous
works. We provide comprehensive analysis of the deep learning
method for the detection of traffic signs with a large intra-
category appearance variation and show below 3% error rates
with the proposed approach, which is sufficient for deployment in
practical applications of the traffic-sign inventory management.

Index Terms—Deep learning, traffic-sign detection and recog-
nition, traffic-sign dataset, Mask R-CNN, traffic-sign inventory
management.

I. INTRODUCTION

Aproper management of a traffic-sign inventory is an
important task in ensuring safety and efficiency of the

traffic flow [1], [2]. Most often this task is performed manually.
Traffic signs are captured using a vehicle-mounted camera and
a manual localization and recognition is performed off-line by
a human operator to check for consistency with the existing
database. However, such manual work can be extremely time-
consuming when applied to thousands of kilometers of roads.
Automating this task would significantly reduce the amount
of manual work and improve the safety through a quicker
detection of damaged or missing traffic signs [3].

A crucial step towards the automation of this task is replac-
ing a manual localization and recognition of traffic signs with
an automatic detection. In the computer-vision community
the problem of traffic-sign recognition has already received
a considerable attention [4], [5], [6], and excellent detection

Fig. 1: The DFG traffic-sign dataset consists of 200 categories
including a large number of traffic signs with a high intra-
category appearance variations.

and recognition algorithms have already been proposed. But
these solutions have been designed only for a small number of
categories, mostly for traffic signs associated with advanced
driver-assistance systems (ADAS) [7] and autonomous vehi-
cles [8].

The detection and recognition of a large number of traffic-
sign categories remains an open question. Various previous
benchmarks have addressed the traffic-sign recognition and
detection task [9], [10], [11], [12], [13]. However, several
of them focused only on the traffic-sign recognition (TSR)
and ignored the much more complex problem of the traffic-
sign detection (TSD) where finding an accurate location of
a traffic sign is needed. Other benchmarks that do address
TSD mostly cover only a subset of traffic-sign categories, most
often ones important for ADAS and autonomous-vehicle ap-
plications. Most categories appearing in such benchmarks have
a distinct appearance with a low inter-category variance and
can be detected using hand-crafted detectors and classifiers.
Such examples include round mandatory signs or triangular
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prohibitory signs. However, many other traffic-sign classes that
are not included in the existing benchmarks can be much more
difficult to detect as they have a high-degree of variation in
appearance. Instances of these categories may have a different
real-world size, aspect ratio, color, and may contain various
text and symbols (e.g., arrows) that significantly differ between
instances of the same class. This often leads to a large degree
of intra-category (i.e. within-category) appearance variation
and at the same time leads to a low degree of inter-category
(i.e. between-categories) variations due to a similar appearance
of objects from different categories.

Modifying existing methods with hand-crafted features and
classifiers to handle such categories would be one option; how-
ever, that would be a time-consuming task, particularly when
considering that many traffic-sign appearances are not consis-
tent between countries. A much more sensible way is to use
feature learning based on real examples. This can easily adapt
and capture high degree of variability in the appearance over a
large number of traffic signs. Recent advances in deep learning
have shown promising results on the detection and recognition
of general objects. Previous works already employed deep
learning approaches for traffic-sign detection and recognition
to some extent [6]; however, their evaluation focused only on
a highly limited subset of traffic-sign categories [13]. One of
the main limitations preventing the deep learning from being
applied to a large set of traffic-sign categories is a lack of an
extensive dataset with several hundred different categories and
a sufficient number of instances for each category. This issue
is particularly important in deep learning where models have
tens of millions of learnable parameters and large numbers of
samples are needed to prevent overfitting.

In this paper, we address the issue of learning and detecting
a large number of traffic-sign categories for the road-based
traffic-sign inventory management. As our main contribution,
we propose a deep-learning-based system for learning a large
number of traffic-sign categories using convolutional neural
networks. We base our system on the state-of-the-art detector
Mask R-CNN [14], which demonstrated a great accuracy and
speed in the field of object detection. The same network
architecture is used not only for the TSR but also for accurate
localization using a region proposal network, resulting in
an efficient end-to-end learning. In contrast to traditional
approaches with hand-crafted features, the convolutional ap-
proach is applied to a broad set of categories, where individual
traffic-sign instances are not only subject to change in lighting
conditions, scale, viewing angle, blur, and occlusions, but
also to significant intra-category appearance variations as well
as low inter-category variations. Furthermore, we propose
improvements to Mask R-CNN that are crucial for the domain
of traffic signs. We propose adaptations that increase the recall
rate, particularly for small traffic signs, and introduce a novel
augmentation technique suitable for traffic-sign categories.

As our secondary contribution, we present a novel challeng-
ing dataset with 200 traffic-sign categories spread over 13,000
traffic-sign instances and 7000 high-resolution images. The
dataset represents a novel benchmark for a complex traffic-sign
detection and recognition task with a large number of classes
having a low inter-category and high intra-category appear-

Fig. 2: Several different categories from the DFG traffic-sign
dataset with a low inter-category and a high intra-category
variability.

ance variability (e.g., see Figure 2). Additionally, the dataset
contains enough instances to ensure appropriate learning of
deep features. We achieve this by providing annotations of 200
traffic-sign categories with at least 20 instances per category
(see Figure 1). Furthermore, our qualitative analysis serves as
an important study for appropriateness of deep learning for
the detection of a large number of traffic-sign categories.

The remainder of the paper is organized as follows. Sec-
tion II provides the related work overview, Section III de-
scribes the employed method, Section IV describes the pro-
posed traffic-sign dataset, Section V presents the experimental
results, and the discussion on the qualitative analysis is pro-
vided in Section VI. The paper concludes with the discussion
in Section VII.

II. RELATED WORK

An enormous amount of literature exists on the topics of
TSR and TSD, and several review papers are available [11],
[15]. In general, it is very difficult to decide which approach
gives better overall results, mainly due to the lack of a standard
publicly available benchmark dataset that would contain an
extensive set of various traffic-sign categories, as emphasized
in several recent studies [15], [16]. Most authors evaluate their
approaches on one of the many public datasets with a relatively
limited number of traffic-sign categories:

• The German Traffic-Sign Detection Benchmark
(GTSDB) [10]: 3 super-categories, primarily intended
for detection.

• The German Traffic-Sign Recognition Benchmark (GT-
SRB) [9]: 43 categories, intended for recognition only.

• The Belgium Traffic Signs (BTS) dataset [17]: 62 cate-
gories, for detection and recognition.

• The Mapping and Assessing the State of Traffic Infras-
tructure (MASTIF) [18]: 9 original categories, extended
to 31 categories [19], acquired for road maintenance
assessment service in Croatia.

• The Swedish traffic-sign dataset (STSD) [20]: 10 cate-
gories, for detection.

• The Laboratory for Intelligent and Safe Automobiles
(LISA) Dataset [11]: 49 categories of traffic signs, ac-
quired on the roads in the USA.
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• The Tsinghua-Tencent 100K dataset [13]: 45 categories,
large dataset with 10,000 images containing at least one
traffic sign and 90,000 background images.

To enrich the set of considered traffic signs, some ap-
proaches sample images from multiple datasets to perform
the evaluation [21], [22]. On the other hand, a vast number
of authors use their own private datasets [4], [23], [24], [25].
To the best of our knowledge, the largest set of categories
was considered in the private dataset of [24], distinguishing
between 131 categories of non-text traffic signs from the roads
of United Kingdom.

Despite a large number of traffic-sign datasets, a compari-
son of traffic-sign detectors for large numbers of categories
remains a challenging problem. In contrast to the existing
benchmarks that focus mostly on small numbers of super-
categories (GTSDB [10]), or on small numbers of simple
traffic signs (BTS [17], MASTIF [18], STSD [20], LISA [11]),
our comprehensive dataset contains 200 traffic-sign categories,
including a large number of categories with a significant
intra-category variability. The closest large-scale dataset is the
Tsinghua-Tencent 100K dataset; however, their evaluation still
focuses only on 45 simple traffic signs. On the other hand, our
dataset enables a comprehensive analysis of detectors in the
context of the traffic-sign inventory management.

Various methods have been employed in TSR and TSD.
Traditionally hand-crafted features have been used, like his-
togram of oriented gradients (HOG) [12], [24], [26], [16], [5],
[19], [10], scale invariant feature transform (SIFT) [5], local
binary patterns (LBP) [16] or integral channel features [26].
A wide range of machine learning methods have also been
employed, ranging from support vector machine (SVM) [24],
[16], [27], logistic regression [28], and random forests [16],
[27], to artificial neural networks in the form of an extreme
learning machine (ELM) [19].

Recently, like the entire computer vision field, TSR and
TSD has also been subject to CNN renaissance. A modern
CNN approach that automatically extracts multi-scale features
for TSD has been applied in [29]. In TSR, CNNs have been
used to automatically learn feature representations as well as to
perform the final classification [30], [31], [32], [33]. In order
to further improve the recognition accuracy, a combination of
CNN and Multilayer Perceptron was applied in [34], while an
ensemble classifier consisting of several CNNs was proposed
in [30], [32]. A method that uses CNN to learn features and
then applies ELM as a classifier has been applied in [35],
while [36] employed a deep network consisting of spatial
transformer layers and a modified version of the inception
module. It has been shown in [37] that the performance
of CNN on recognition outperforms the human performance
on GTSRB. A combined problems of TSR and TSD were
addressed using CNNs in recent works of [6], [13]. In the
latter, they use a heavily modified OverFeat [38] network,
while in the former they applied a fully convolutional network
to obtain a heat map of the image, on which a region proposal
algorithm was employed for detection. Finally, a separate CNN
was then employed to classify the obtained regions.

Our proposed deep-learning-based approach differs from
previous related works. In contrast to the traditional ap-

proaches with hand-crafted features and machine learning [12],
[24], we propose a full feature learning with end-to-end
learning. Our approach also differs from other deep-learning-
based traffic-sign detection methods. Our method, which is
based on Mask R-CNN, uses region proposal network instead
of using a separate method for generating region proposals as
in [6], and in contrast to [13], we employ deeper networks
based on the VGG16 [39] and ResNet-50 [40] architectures.
As opposed to both [6] and [13], we also employ a network
pre-trained on ImageNet, which significantly reduces the need
for training samples. In addition, we have implemented several
extensions leading to superior performance.

III. TRAFFIC-SIGN DETECTION WITH MASK R-CNN

In this section, we present our system for traffic-sign de-
tection using the Mask R-CNN detector extended with several
improvements. First, we present the original Mask R-CNN
detector, then we present our adaptation for learning traffic-
sign categories, and finally, we present our data augmentation
technique.

A. Mask R-CNN

Here we briefly describe Mask R-CNN and refer the reader
to [14] for a more detailed description. The Mask R-CNN
network [14] is an extension of Faster R-CNN [41], both
of which are composed of two modules. The first module is
deep fully convolutional network, a so-called Region Proposal
Network (RPN), that takes an input image and produces a
set of rectangular object proposals, each with an objectness
score. The second module is a region-based CNN, called Fast
R-CNN, that classifies the proposed regions into a set of
predefined categories. Fast R-CNN is highly efficient, since
it shares convolutions across individual proposals. It also
performs bounding box regression to further refine the quality
of the proposed regions. The entire system is a single unified
network, in which RPN and Fast R-CNN are merged by
sharing their convolutional features. Following the recently
popular terminology of neural networks with the “attention”
mechanism, the RPN module tells the Fast R-CNN module
where to look. Mask R-CNN then improves this system
by combining the underlying network architecture with a
Feature Pyramid Network (FPN) [42]. With the FPN, the
detector is able to improve the performance on small objects,
since FPN extracts features from the lower layers of the
network, before the down-sampling removes important details
in small objects. The underlaying network architecture, which
is VGG16 [39] in Faster R-CNN, is replaced with a residual
network (ResNet) [40] in Mask R-CNN.

Faster and Mask R-CNN are trained for the region proposal
task as well as for the classification task. This is performed
with a stochastic gradient descent. Mask R-CNN learns both
networks simultaneously using end-to-end learning. The origi-
nal Faster R-CNN implementation performed this with a 4-step
optimization process that alternated between the two tasks.
However, the newer end-to-end learning scheme from Mask
R-CNN is also applicable to Faster R-CNN. Commonly, both
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networks are initialized with the ImageNet pre-trained model
before they are trained on the specific domain.

Both methods enable fast detection and recognition in the
test-phase. For each input image the trained model outputs a
set of object bounding boxes, where each box is associated
with a category label and a softmax score in the interval of
[0, 1].

B. Adaptation to traffic-sign detection

Mask R-CNN is a general method developed for the detec-
tion and recognition of general objects. In order to adapt it to
the particular domain of TSD, we developed and implemented
several domain specific improvements.

a) Online hard-example mining: We first incorporate
online hard-example mining (OHEM) into the classification
learning module (Fast R-CNN module). Following the work
of Shrivastava et al. [43], that introduced OHEM for Faster R-
CNN, we replace the method for selecting regions of interest
(ROIs) that are passed to the classification learning module.
Normally, 256 ROIs per image are selected randomly, some
as foreground (traffic signs) and some as background. In our
approach, we replace the random selection of ROIs with the
selection based on their classification loss value. Regions are
sorted based on their loss value and only ones with a high
enough loss are passed to the classification learning module.
This ensures learning on samples on which the network was
mistaken the most, i.e., on hard examples. We perform selec-
tion for the background and the foreground objects separately
to ensure a sufficient number of positive and negative samples
during each gradient descent step.

We implement OHEM in an end-to-end learning freamwork
by utilizing the existing classification module to obtain the
classification losses for ROIs. Note that the classification loss,
which represents a criteria for selecting ROIs, is not computed
for all possible ROIs generated by the RPN but only for the top
ROIs based on their objectness score. We take 2000 regions
and perform a non-maxima suppression (NMS) to eliminate
duplicated ROIs. This is a standard approach to reduce the
number of ROIs in Mask R-CNN before they are selected
for learning. We experimented with using more than 2000
regions before the NMS but this significantly increased the
learning time due to the slower NMS without contributing to
any performance gain.

b) Distribution of selected training samples: The mech-
anism for selecting the training samples for the region pro-
posal network is also improved in the proposed approach.
Originally, the Mask R-CNN selects ROIs randomly. This
is done separately for foreground and background. However,
when many small and large objects are present in the image
at the same time the random selection introduces imbalance
into the learning process. The imbalance arises due to large
objects having a large number of ROIs that cover it, while
small objects have only a small number of ROIs. Selecting
samples based on this distribution skews the learning process,
since larger objects are observed more often and favored much
more than the smaller ones. To alleviate this issue we change
the distribution of the selected training samples to evenly cover

all sizes of the training objects. We achieve this by selecting
the same number of ROIs for each object present in the image.

c) Sample weighting: We incorporate additional weight-
ing of samples during the learning process. Our evaluation
showed that Mask R-CNN cannot achieve 100% recall due to
missing region proposals in certain cases. We address this issue
with different weighting of the training regions. During the
learning, both foreground and background regions are selected;
however, there are often many more background regions, since
most of the traffic signs in images are small and only a
few region proposals exist for those traffic signs. Without
any weighting the learning process will observe background
objects more often and will focus on learning the background
instead of the foreground. We address this problem with
smaller weights for the background regions, which forces the
network to learn foreground objects first. This is implemented
for the training process of the region proposal network as
well as for the classification network, weighting backgrounds
with 0.01 for the RPN and 0.1 for the classification network.
This improvement is particularly important for the RPN, since
regions missed at this point in the pipeline cannot be recovered
later by the classification module and would lead to poor
overall recall if not addressed.

d) Adjusting region pass-through during detection:
Lastly, we also change the number of ROIs passed from the
RPN to the classification network during the detection stage.
The number of regions passed through need to be adjusted due
to a large number of small objects that are commonly present
in the traffic-sign domain. We increase this number from 1000
to 10,000 regions per one FPN level before the NMS. After
merging ROIs from all FPN levels and performing the NMS
2000 regions are retained.

C. Data augmentation

An important factor to consider when learning deep models
is the size of the training set. Due to millions of learnable
parameters the system becomes undetermined without a suf-
ficient number of training samples. We partially address this
issue with a pre-trained model, one learned on 1.2 million
images of ImageNet, but we also propose an additional data
augmentation. The nature of the traffic-sign domain allows us
to construct a large number of new samples using artificial
distortions of existing traffic-sign instances.

Additional synthetic traffic-sign instances are created by
modifying segmented, real-world training samples. The traffic
signs in the proposed dataset are annotated with tight polygons
(see Figure 7), and can therefore be segmented from the
training images. Two types of distortions were performed: (i)
geometric/shape distortions (perspective change, changes in
scale), and (ii) appearance distortions (variations in brightness
and contrast).

Before applying geometric and appearance distortions we
first normalized each traffic-sign instance. For the appearance
normalization, we normalized the contrast of the intensity
channel in the L*a*b domain, while for the geometric normal-
ization, we calculated the homography between the instance
annotation points and a geometric template for a specific



5

Original Normalized Synthetically generated distortions

Fig. 3: Several examples of traffic-sign instances as generated
during the process of data augmentation: the original image
on the left, the normalized geometry and appearance in the
middle, and the generated samples with synthetic distortions
on the right.

traffic-sign class. We manually created templates for most of
the classes with the exception of several classes where this was
not possible (e.g. the train crossing sign, the arrow shaped
direction signs, etc.). We generated new synthetic instances
for those classes as well but without performing geometry
normalization and without applying geometric distortions to
synthetic instances.

In order to generate synthetic training samples that are as re-
alistic as possible, we followed the distribution of the training-
set’s geometry and appearance variability. For the geometry
change we estimated the distribution of Euler rotation angles
(around X, Y and Z axis) of training examples, while for the
appearance change, we estimated the distribution of averaged
intensity values. We additionally estimated the distribution
of scales using the size of geometry normalized (rectified)
instances. We modeled all changes with a Gaussian mixture
model, but used a single mixture component, K=1, for the
geometry and appearance, and two mixture components, K=2,
for the scale. Several examples of original, normalized and
synthetically generated samples are shown in Figure 3, while
histograms and their corresponding distributions for different
distortions are depicted in Figure 4.

When generating synthetic distortions we sampled random
values from the corresponding distributions. However, variance
that is twice as large as the variance in the observed distribu-
tion was used to increase the likelihood of generating larger
distortions. In the appearance distortion the distributions were
not generic for all classes, but instead, we used a different
distribution for every class. We used a class specific mean
instead of a mean over all categories but we still applied
a common variance calculated from all the categories. This
guarded us from generating invalid contrast values for very
dark/bright categories, such as gray or white direction signs.

To emulate the real-world settings, the newly generated
traffic-sign instances were inserted into the street-environment-
like background images. Background images were taken from
the subset of the BTS dataset [17], which contains no other
traffic signs. At least two, and at most five, traffic signs
were placed in a non-overlapping manner in random locations
of each background image, avoiding the bottom central part
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Fig. 4: Distributions of traffic-sign distortions computed for an
rotation in the top row, the appearance (i.e. brightness) in the
bottom left side and the scale in the bottom right side. Red
lines represent the Gaussian distributions, which are sampled
when generating new examples.

where only the road is usually seen. With the whole augmen-
tation process we generated enough new instances to ensure
that each category has at least 200 instances. This resulted
in around 30,000 new traffic-sign instances spread over 8775
new training images.

IV. THE DFG TRAFFIC-SIGN DATASET

Our dataset was acquired by the DFG Consulting d.o.o.
company for the purpose of maintaining the inventory of traffic
signs on Slovenian roads. The RGB images1 were acquired
with a camera mounted on a vehicle that was driven through
several different Slovenian municipalities. The image data was
acquired in rural as well as in urban areas. Only images
containing at least one traffic sign were selected from the
vast corpus of collected data. Moreover, the selection was
performed in such a way that there is usually a significant
scene change between any pair of selected consecutive images.
Since images were acquired for the purpose of maintaining the
traffic-sign inventory, this allowed the image acquisition to be
performed in the day-time avoiding bad weather conditions
such as rain, snow and fog. Nevertheless, the dataset does
include other challenging variations in the weather and the
environment that are present in the real-world environment
such as: rural and city/urban landscape, different levels of
natural occlusions and shadows, and various ranges of a
cloudy sky and direct sunlight. A few images taken in winter
conditions with the a slight snow cover were also included.
Several examples of images in the DFG dataset are shown in
Figure 5.

The dataset, termed the DFG traffic-sign dataset2, contains a
total of 6957 images with 13,239 tightly annotated traffic-sign
instances corresponding to 200 categories. Most of images are

1The images have been anonymized by blurring the faces and vehicle
licence plates to comply with the EU GDPR legislation.

2The dataset, termed DFG traffic-sign dataset, is publicly available at
http://www.vicos.si/Downloads/DFGTSD
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Fig. 6: Distribution of number of instances over categories
in the DFG traffic-sign dataset. Horizontal red dashed line
represents 20 instances per category, which we use as a cut-
off point. Note, the distribution is shown in the logarithmic
scale.

of high-resolution (1920× 1080), while less than 200 images
are of a lower resolution (720 × 576). The total number of
instances is different for each category (see Figure 6). Each
image contains annotations of all traffic signs larger than 20
pixels for any of the 200 categories in form of a tightly
annotated polygon (see Figure 7). Categories in the dataset
represent a subset of all categories from the corpus of raw
images provided by the company; however, some categories
in the corpus did not meet the necessary criteria to create a
quality dataset. In particular, all categories in the public dataset
now meet the following three criteria: (a) each category has
a sufficient number of instances (at least 20 instances with a
minimal bounding box size of 30 pixels), (b) each category
represents a planar object and (c) each category contains traffic
signs that have at least some visual consistency. Among all
categories in the DFG traffic-sign dataset roughly 70% of them
correspond to traffic signs with low appearance changes, while
a significantly larger appearance variability is present in the
remaining 30%. Latter signs can be of a variable aspect ratio
or color and can contain various text and numbers. See 200
categories of traffic signs depicted in Figure 1.

Note that the dataset contains annotations as small as 15-20
pixels. However, annotations smaller than 30 pixels are marked
with the ”ignore“ flag and are not considered neither for the
training nor for the testing. We selected 30 pixels as a minimal

Fig. 7: Several examples of traffic signs in the DFG traffic-sign
dataset with their corresponding annotation masks showing the
precision of the annotations.

size based on the down-sampling of features, which in Faster
and Mask R-CNN results in 32x32 pixels being represented by
1x1 feature pixel. Many traffic signs marked with the ”ignore“
flag are annotated with a bounding box instead of a tight
polygon. We also marked with the ”ignore“ flag a few traffic
signs for which even humans had difficulty classifying into the
specific category due to its small size, blurriness or occlusion.

A suitable train-test split was generated to provide a suffi-
cient number of samples for both the training and the test set.
A restriction was set that 25% of traffic-sign instances for
each category have to appear in the test set. For the smallest
categories with only 20 instances, this ensured 15 samples
for the training set and 5 samples for the test set. Images
were assigned randomly to either the training or the test set.
However, an additional constraint mechanism was employed
to ensure all images of the same physical object are always
present either in the test set or in the training set but never in
both of them at the same time. This was ensured by clustering
the images that were acquired within 50 meter distance and
assigning the whole clusters to the training or to the test set.
In this way, we generated a training set with 5254 images and
a test set with 1703 images.

V. EXPERIMENTAL EVALUATION

In this section, we describe extensive evaluation of deep
learning methods that are appropriate for the traffic-sign de-
tection and recognition. We focus on evaluating two state-
of-the-art, region-proposal-based methods: Faster R-CNN and

Fig. 5: Several examples of images from the DFG traffic-sign dataset.
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Mask R-CNN. We first perform evaluation on the existing
public traffic-sign dataset to establish a baseline comparison
with the related work. Swedish traffic-sign dataset (STSD) is
used for this purpose. Then, an extensive evaluation on the
newly proposed DFG traffic-sign dataset is performed with a
comprehensive analysis of the proposed improvements.

A. Implementation details

A publicly available Caffe2-based, Python implementation
of the Detectron [44] is used for both Faster and Mask R-
CNN3. For the Faster R-CNN, we employ the VGG16 [39]
network with 13 convolutional layers and 3 fully-connected
layers, while for the Mask R-CNN, we employ a residual
network [40] with 50 convolutional layers (ResNet-50). The
ResNet-50 architecture consists of 16 convolutional filters with
kernel sizes of 3× 3 or larger, while remaining convolutional
layers use 1 × 1 kernel sizes. Mask R-CNN also implements
Feature Pyramid Network (FPN) [42], which collects features
from different layers of the network to capture the information
from small objects, which may be removed in higher layers
due to down-sampling. Both networks are initialized with a
model pre-trained on ImageNet as provided by [44]. We also
experimented with a larger variant of the residual network
using 101 layers (ResNet-101), but performance did not im-
prove compared to ResNet-50. We therefore focused only on
the ResNet-50, which at the same time is faster with half the
layers of ResNet-101.

Both methods use similar learning hyper-parameters. A
learning rate of 0.001 is used for Faster R-CNN with a
weight decay of 0.0005, while a learning rate of 0.0025 and
a weight decay of 0.0001 is used for Mask R-CNN. Both
approaches also use momentum of 0.9. The same hyper-
parameters are used in all experiments. Note that the same
hyper-parameters are used in [44] to pre-train the model on
ImageNet dataset. Both methods are trained end-to-end with
simultaneous learning of both the region proposal network
and the classification network. We learn both methods for 95
epochs and reduce the learning rate by a factor of 10 at the
50th and 75th epoch. We use two images per batch per GPU
and train on STSD with 2 GPUs and on DFG dataset with 4
GPUs. This resulted in effectively using 4 images per batch
on the STSD and 8 images per batch on the DFG dataset.

B. Performance metrics

Several different metrics are used in this study to evaluate
the proposed approach. As a primary metric, we report the
mean average precision (mAP), which is commonly used
in the evaluation of visual object detectors. We use two
variants of the mAP: (i) mAP50, based on the PASCAL visual
object challenge [45], and (ii) mAP50:95, based on the COCO
challenge [46]. Both metrics define a minimal intersection-
over-union (IoU) overlap with the ground-truth region for a
detection to be considered as a true positive, and both compute

3Our proposed improvements have been implemented in the Detec-
tron framework and are publicly available in the GitHub repository:
https://github.com/skokec/detectron-traffic-signs

the average precision (AP) as the area under the precision-
recall curve to accurately capture the trade-off between the
miss rate and the false-positive rate. AP is calculated for each
category independently and the final metric consists of AP
values averaged over all categories. A fixed IoU overlap is
used in the mAP50—using the PASCAL-based IoU overlap of
0.50. However, in mAP50:95, the reported value is an average
of mAP values calculated at a range of IoU overlap values.
The reported values are averaged over the IoU overlap range
of [0.50, 0.95] with 0.05 increments, the same range as used
in the COCO detection challenge [46]. Thus, the COCO-based
mAP puts more emphasis on the quality of region overlaps,
while the PASCAL-based mAP ignores that aspect.

For a comparison with the state-of-the-art, we also report
precision and recall values at the best F-measure and their cor-
responding error rates, i.e. false-positive rate as 1−precision
and miss rate as 1 − recall, respectively. The false-positive
rate shows how many detections are false, while the miss rate
reveals how many traffic signs were not detected at all.

C. Comparison to the state-of-the-art

Although many previously proposed approaches exist, it is
quite difficult to perform a reliable comparison with those
approaches, since they are mostly evaluated on non-public
datasets or, only on the TSR task. To this end, we evaluated the
proposed method on the Swedish traffic-sign dataset (STSD),
comparing the results to the previously best performing meth-
ods published in [6], and indirectly to other methods reported
therein.

The STSD benchmark contains around 20 categories with
simple traffic signs in over 19,236 images separated equally
into the training (denoted Set1 in STSD) and the test set
(denoted Set2). However, only a subset of 3777 images from
both sets contain annotations (denoted as Part0 in each set).
We follow the evaluation protocol of [6] and use only ten
categories with images from Set1Part0 for the training and
images from Set2Part0 for the testing. For a fair evaluation
with [6], we consider only annotations with bounding box
sizes of at least 50 pixels. The remaining annotations are
ignored in both the train and the test stage. Due to the GPU
memory limitations, we resized images to have image size of
at least 918 pixels (i.e., both width and height are at least 918
pixels). For fair a comparison between different architectures,
the same image size was used in all variants of Faster/Mask
R-CNN. We did not use data augmentation in this experiment.

Detailed results on STSD are reported in Tables I and II,
with the corresponding error rates depicted in Figure 8. When
focusing on the related work and Faster/Mask R-CNN without
our adaptations it is clear that pre-computed region proposals
from R-CNN (as reported in [6]) perform worse than the newer
R-CNN variants with the region proposal network. Error rates
for R-CNN are twice as large as for the Faster/Mask R-CNN.
On the other hand, the fully convolutional method (FCN)
proposed by [6] achieves a significantly lower false-positive
rate of 2.3% than both original Faster and Mask R-CNN, but
has a slightly worse miss rate of 7.1%. Faster and Mask R-
CNN have a lower miss rate by 1 percentage point (pp.). The
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TABLE II: Evaluation on Swedish traffic-sign dataset (STSD)
with reported averaged values over ten categories.

Average R-CNN
[6]

FCN
[6]

Faster
R-CNN

Mask R-CNN
(ResNet-50)

No adapt. Adapt.
(ours)

Precision 91.2 97.7 95.4 95.3 97.5
Recall 87.2 92.9 94.0 93.6 96.7
F-measure 88.8 95.0 94.6 93.8 97.0
mAP50 / / 94.3 94.9 95.2

standard mAP50 metric in Table II also shows Faster R-CNN
and Mask R-CNN with ResNet-50 achieving mAP50 of 94.3%
and 94.9%, respectively.

Results also show that the best performance is obtained
when our adaptations are applied to the Mask R-CNN. Our
proposed approach, in this case, achieves mAP50 of 95.2%,
with an average false-positive rate of 2.5% and an average
miss rate of 3.3%. Compared to the related work, the FCN [6]
achieves a similar false-positive rate but has at least twice
as large miss rate at 7.1%. Improvements in our approach
are better reflected in F-measure, which is defined as a
harmonic mean between the precision and the recall. Our
approach clearly outperforms the state-of-the-art with 2 pp
higher F-measure. Those improvements directly stem from
our proposed adaptations and not from the Faster/Mask R-
CNN as the average miss and false-positive rates without
our adaptations are still 6.6% and 4.7%, respectively, while
they are reduced to only 3.3% and 2.5% with the proposed
improvements. This is reflected in an improved F-measure and
in mAP50 as well.

D. Evaluation on DFG traffic-sign dataset

Next, the proposed method is extensively evaluated on
the DFG traffic-sign dataset. We use the train-test split as
presented in Section IV with 200 categories in 5254 training
and 1703 testing images, and using only annotations with
at least 30 pixels in size. Annotations below 30 pixels are

Miss rate (%) False positive rate (%)
0
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14
Error rates on STSD

R-CNN [6]
FCN [6]
Faster R-CNN
Mask R-CNN
Mask R-CNN (our)

Fig. 8: Miss rates (1−recall) and false positive (1−precision)
rates on Swedish traffic-sign dataset averaged over ten cate-
gories. Values are calculated at ideal F-measure. Note, smaller
values are better.

ignored during the training and during the evaluation we ignore
detections of those objects to prevent penalizing the detector
when it correctly detects small objects. We further resize
images for both the training and the testing due to memory
limitations. We resize images in all variants of Faster/Mask
R-CNN to have image sizes of at least 840 pixels in both
width and height. This was made for fair comparison under the
same hardware limitations for all network models. Considering
images are Full-HD with the image hight of 1080 pixels, this
change represents slightly less than a 25% reduction in size.

Region proposal evaluation: We first evaluate the region
proposal network separately from the classification network.
This allows us to assess the quality of region proposals as gen-
erated by the RPN before they are passed to the classification
module. We take top N regions from the RPN and observe the
miss rate and the recall rate of all annotated traffic signs. To
ensure a correct balance between the categories with either a
small or a large number of instances, we calculate the metric
for individual categories and then report the average over all
categories.

Results are reported in Figure 9, with (a) - (b) showing
results when all annotations are considered and with (c) -

TABLE I: Detailed results on Swedish traffic-sign dataset (STDS) for different categories.

Traffic Sign

FCN [6] Faster R-CNN Mask R-CNN (ResNet-50)

No adaptations With adaptations (our)

Prec. Rec. Prec. Rec. AP50 Prec. Rec. AP50 Prec. Rec. AP50

PED. CROS. 100.0 95.2 92.6 92.6 94.1 100.0 97.5 98.2 99.2 97.6 97.6
PASS RIGHT SIDE 95.3 93.8 98.1 98.1 99.5 94.8 98.2 98.6 100.0 98.2 99.8
NO STOP/STAN 100.0 75.0 92.3 92.3 86.5 81.2 100.0 95.4 86.7 100.0 83.9
50 SIGN 100.0 100.0 81.2 92.9 90.3 87.5 100.0 97.5 90.0 96.4 96.9
PRIORITY ROAD 100.0 98.9 98.7 95.1 92.1 97.5 97.5 96.9 98.7 92.9 89.8
GIVE WAY 96.7 96.7 100.0 94.1 94.1 100.0 91.4 91.4 100.0 94.1 94.1
70 SIGN 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
80 SIGN 94.4 77.3 100.0 95.2 95.2 95.2 100.0 99.8 100.0 100.0 100.0
100 SIGN 90.5 100.0 94.1 88.9 92.5 100.0 61.1 74.8 100.0 93.8 93.8
NO PARKING 100.0 92.1 96.8 90.9 98.5 96.7 90.6 95.9 100.0 93.9 96.5

Averaged 97.7 92.9 95.4 94.0 94.3 95.3 93.6 94.9 97.5 96.7 95.2
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Fig. 9: Miss rate and recall for region proposals generated by the RPN. Graphs (a) and (b) show results when considering all
valid annotations, while graphs (c) and (d), when considering only ground-truth traffic signs in sizes of 30− 50 pixels. We
show in (a) and (c) the miss rate over top-N regions using IoU overlap of 0.50, and in (b) and (d), the recall rate over different
IoU overlaps using the top 5000 region proposals.

TABLE III: Results on DFG traffic-sign dataset.

Faster
R-CNN

Mask R-CNN (ResNet-50)

No adapt. With
adapt.

With adapt. and
data augment.

mAP50 92.4 93.0 95.2 95.5
mAP50:95 80.4 82.3 82.0 84.4
Max recall 93.8 94.6 96.5 96.5

(d), for smaller traffic signs only, i.e., when considering only
ground-truth traffic signs that are 30− 50 pixels in size. In
both cases, we report the miss rate over the top-N regions
using an IoU overlap of 0.50 in (a) and (c), and the recall over
different IoU overlaps using the top 5000 region proposals in
(b) and (d). Figure 9b first reveals that Faster R-CNN performs
worse than the other methods. This is particularly evident at
higher IoU overlaps where Faster R-CNN performs more than
5 pp worse.

The miss rates of various top-N regions, shown in Figure 9a,
demonstrate that all methods perform extremely well with over
99% of all traffic signs found. However, only our proposed
method achieves close to zero miss rate, and as indicated by
the recall over IoU overlaps in Figure 9b, the proposed method
is able to retain a high recall at high overlap values. This
suggests that our adaptations decrease the miss rate of the RPN
and higher quality regions can be produced, i.e., regions with
a high overlap with the ground-truth. Moreover, improvements
are more significant in smaller regions, as shown in Figure 9c
and 9d. In this case, our adaptation achieves a significantly
better miss rate than Faster/Mask R-CNN that did not use
our adaptation. Even at a more liberal IoU overlap of 0.50,
the standard approach achieves a 3% miss rate, while our
adaptation achieves a miss rate close to zero. This difference
is well observed in Figure 9d, showing our proposed method
achieving higher recall rates at larger IoU.

Improvements in the miss rate at this level are important
for the whole pipeline, since objects missed by the region
proposals at this stage cannot be recovered later by the
classification network. Results show that Mask R-CNN is

unable to achieve a full detection of all objects, particularly
for small objects; however, our adaptations overcome this issue
and achieve a miss rate near zero.

Full pipeline evaluation: Next, we evaluate the whole
detection pipeline with the RPN and classification networks
combined. We report our results in terms of the mean average
precision (mAP) over all 200 categories as well as in terms
of maximal possible recall that can be attained with the final
detections when thresholding the score at 0.01 This value is
directly related to the miss rate and the recall rate of region
proposals in the previous section, and when both values are
compared, we can deduce how many traffic signs were missed
due to a poor performance of the classification network only.

Results are reported in Table III and clearly show that
Faster R-CNN performs the worst among all methods, while
the best results are achieved with our adaptations for Mask
R-CNN. Nevertheless, all methods achieve mAP50 of over
90%. Compared to the original Mask R-CNN, our pro-
posed adaptations already improve results when measured in
mAP50 and maximal recall/miss rate metrics, even without
data augmentation. The performance in mAP50 metric is
improved from 93% to over 95%, and the miss rate error
is almost halved from 5.4% to 3.5%. Slightly worse results
are achieved in the mAP50:95 metric but this is improved
when augmentation is enabled. With augmentation we slightly
improve mAP50, and significantly improve mAP50:95 from
82− 82 3% with the original Mask R-CNN to 84.4% for the
case when our adaptations and data augmentation are used.
The data augmentation has contributed mostly to improving
the precision of bounding boxes. Results also reveal that while
overall miss rate has been reduced by half compared to the
original Mask R-CNN, there still remain 3.5% missed objects
despite, as shown in the previous section, having near zero
miss rate in the region proposals. This points to traffic-sign
detections being lost by the classification network.

Different traffic-sign sizes: We also perform the evalu-
ation considering different traffic-sign sizes with the results
reported in Table IV. This analysis reveals a poor performance
on smaller objects when using the original Faster and Mask
R-CNN. The difference in both mAP50 and the maximal
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TABLE IV: Results on DFG traffic-sign dataset when considering different sizes of traffic signs.

Traffic-sign size
(% signs retained)

Faster R-CNN Mask R-CNN Mask R-CNN with adapt.
and data augmentation (ours)

ResNet-50 ResNet-101 ResNet-50 ResNet-101
Max
recall mAP50 Max

recall mAP50 Max
recall mAP50 Max

recall mAP50 Max
recall mAP50

min 30 px (100%) 93.8 92.4 94.6 93.0 94.8 93.2 96.5 95.5 96.1 95.2
min 40 px (89%) 96.1 95.0 96.8 95.3 96.8 95.3 97.4 96.7 97.0 96.4
min 50 px (80%) 96.6 95.0 96.7 94.9 96.8 95.2 97.2 96.0 96.8 95.5

Category
0 50 100 150 200

A
P5

0

0

0.2

0.4

0.6

0.8

1
Per class averaged precision

Fig. 10: Sorted per-class AP50 distribution on the test set of the
DFG traffic-sign dataset. The blue bars depict Mask R-CNN
(ResNet-50) with our improvements and data augmentation,
while green and red bars show change in performance (in-
creased for green and decreased for red) compared to the base
Mask R-CNN (ResNet-50) without our improvements.

recall rate between small and large objects is around 2 pp .
However, with our adaptations, the detection of smaller objects
is improved significantly and completely eliminates the perfor-
mance gap between the detection of small and large objects.
Moreover, this is achieved on top of the improved detection
on large objects.

Deeper Residual Network: We also show results ob-
tained with ResNet-101 architecture in Table IV. ResNet-
101 performs similarly to the smaller ResNet-50 in most
cases. When our improvements are not included, ResNet-
101 performs less than 0.2 pp better; however, this reverses
when our improvements are included. The difference between
both of them still remains minimal at below 0.4 pp . Since
ResNet-101 is larger with twice as many layers with more
computational resources required, the ResNet-50 represents a
significantly better choice.

VI. QUALITATIVE ANALYSIS

In this section, we demonstrate the performance of our
approach on traffic-sign detection with additional qualitative
analysis. We focus only on the best performing model, namely
Mask R-CNN using ResNet-50 with our adaptations and data
augmentation. All results in this section are reported on the
test set of the DFG traffic-sign dataset.

A per-class distribution of AP50 is depicted in Figure 10.
This graph clearly shows that a large number of traffic-
sign classes (108) are detected and recognized with average

precision of 100%, i.e. with no errors. For the remaining
categories our approach still achieved AP of above 90% on
60 of them, and above 80% on 23 of them.

Figure 11 further shows the traffic-sign classes with their
corresponding AP50 sorted by their AP50 in descending order.
The best performing categories at the top of the list are mostly
the traffic signs with a low intra-category variations, i.e. with
a fixed size and a fixed appearance. This includes various
triangular danger signs, circular prohibitory signs, speed limit
signs, rectangular information signs, etc. On the other hand,
the worst performing signs at the bottom are traffic signs with
a large variation of their sizes/aspect ratios as well as with a
large intra-category variations, i.e., their content significantly
varies from instance to instance. This includes particularly
complex class of mirrors (both rectangular and round mirrors),
digital speed signs, various direction signs and signs marking
the start or the end of the towns.

Traffic signs with high intra-category variations and
good performance: Figure 11 reveals several traffic signs
with extremely good detection rate despite having large intra-
category variations in their appearance. Samples for three
such traffic-sign categories are depicted in Figure 12, namely:
(i) large-direction-with-separate-lanes, (ii) left-arrow-shaped-
direction and (iii) right-gray-direction. Each row in this figure
depicts one category with eight instances. For clarity we
display only the relevant part of the image. True detections are
shown in green, false detections in red and missing detections
in magenta. Examples are also sorted by their descending
detection score from the left to the right. Therefore if true
(green) and false (red) positive detections can be successfully
separated with a threshold, then false detections can be trivially
eliminated by setting an appropriate detection threshold. Note
that this is important when looking at false detections as many
of them are not problematic at all.

When focusing on the large-direction-with-separate-lanes
traffic-sign category in the first row in Figure 12, an extremely
good performance is clearly shown for the traffic signs that
have a quite significant variation in their content as well as a
large variation in their sizes and aspect ratios. The first image
in the top row depicts a good example of this as the traffic
sign was detected with a high score despite having completely
different color combination than other instances of the same
class. Several detected instances are also quite small, yet our
approach successfully detects them.

The second row in Figure 12 depicts detections of a left-
arrow-shaped-direction traffic sign. This category is fairly
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Fig. 11: DFG traffic-sign categories sorted by the average precision (AP50) calculated when using Mask R-CNN ResNet-50
with our adaptations and data augmentation.

difficult to detect as aspect ratios vary quite significantly from
instance to instance, mostly due to wide viewing angles, yet
the detector did not have significant issues finding them. The
second-to-last example in the second row is also significantly
cropped; however, the detector is still able to correctly find it.

Finally, detections for the right-gray-direction traffic sign
are shown in the last row in Figure 12. Detection of this
category is difficult mostly due to a significant variation of
the content. Those traffic signs also often appear side-by-
side in multiple rows which makes it difficult to generate

the correct region proposal. Nevertheless, most instances have
been correctly found.

Traffic signs with poor performance and low intra-
category variations: Next, we focus on three worst performing
traffic signs despite having low appearance variation within a
category, namely: (i) left-lane-merger, (ii) train-crossing and
(iii) work-in-progress. Samples are depicted in Figure 13 and
are organized in a similar manner as in Figure 12, with eight
examples per category in a row, sorted by their descending
detection score.

Fig. 12: Examples of complex traffic signs with a variable content and a good detection on the test set of the DFG traffic-sign
dataset. True positives are depicted in green, false positives in red, and missing detections (false negatives) in magenta. Images
are best viewed in colors.
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Fig. 13: Examples of traffic signs with a fixed content but poor detection on the test set of the DFG traffic-sign dataset.
True-positive detections are marked in green, false positives in red and missing detections (false negatives) in magenta. (*)
Note that false detections in the first row occur due to two almost identical traffic-sign categories in the dataset (one with
distance label below and one without). True detections with the other category detector are shown in dashed green line. Images
are best viewed in colors.

The worst results are achieved for the left-lane-merger traf-
fic sign with the AP50 of 57%. Mask R-CNN correctly detects
four out of five test instances, but appears to detect four false
traffic signs as well, as can be seen in the top row. However,
those false detections should not be considered problematic as
the traffic sign is identical to the left-lane-merger sign with the
only difference in the distance value printed below the sign.
Since the correct category is also detected (shown with the
dashed green line), those false detections would be eliminated
by the across-category non-maxima suppression, meaning that
even in this case the issue is not as bad as it might seem.
Still, such extremely minor differences between those two
categories appear to pose a challenge for deep learning and
point to existing limitations of deep learning methods.

The detector is also exhibiting inferior performance for
the train-crossing traffic sign as seen in the second row in
Figure 13. The reason in this case can be found in two missed
detections out of total six traffic signs. Both missed objects
are very small, with one having a fairly wide viewing angle,
making the detection also extremely difficult. A few detections
on false objects are also visible, most likely due to the presence
of a cross-like shape. However, they do not contribute to a poor
performance due to their low detection score.

The primary issue for the low performance on the work-
in-progress sign, depicted in the third row of Figure 13, is
a high miss rate. Three out of eleven traffic signs are not
detected. Most objects missed are fairly small. The exception
is the instance depicted in the last column where a significant
occlusion would pose difficulty even for humans—its category
was deduced mostly from the context.

Overall detection: Despite some missed detections shown
in Figure 13, the detector still preforms extremely well even
for several difficult cases. For instance, the second example in
the first row of Figure 13 is extremely difficult to detect due

to a large viewing angle, but the detector still managed to find
it—even with a large score. The detector was also able to find
some fairly small instances, such as ones in the first and the
last row.

A good performance is also presented in Figure 14 where
all traffic-sign detections are displayed for a couple of full-
resolution images. This figure shows detections of several
complex instances with occlusions and small traffic-sign sizes;
however, the detector still performs extremely well.

VII. DISCUSSION AND CONCLUSION

In this work, we have addressed the problem of detecting
and recognizing a large number of traffic-sign categories for
the main purpose of automating the traffic-sign inventory
management. Due to a large number of categories with a
small inter-class but a high intra-class variability, we proposed
detection and recognition utilizing an approach based on the
Mask R-CNN [14] detector. The system provides an efficient
deep network for learning a large number of categories with
efficient and fast detection. We proposed several adaptations
to Mask R-CNN that improve the learning capability on the
domain of traffic signs. Furthermore, we proposed a data
augmentation technique based on the distribution of geometric
and appearance distortions. As an important contribution, we
also present a novel dataset, termed the DFG traffic-sign
dataset, with a large number of traffic-sign categories that
have a low inter-class and a high intra-class variability. This
dataset has been made publicly available together with the
code for our improvements, allowing the research community
to make further progress on this problem, and enabling a
reliable and a fair comparison of different methods on a
large-scale traffic-sign detection problem. We also extensively
evaluated our proposed improvements and compared them
against the original Faster and Mask R-CNN. Our evaluation



13

Fig. 14: Examples of detections on the test set of the DFG traffic-sign dataset. True detections shown in green and missing,
in magenta. Images are best viewed in colors.

on the DFG and the Swedish traffic-sign datasets showed that
the proposed adaptations improve the performance of Mask
R-CNN in several metrics. This includes improvement in the
miss rate of the RPN network for small objects, improvement
in the overall recall of the full pipeline for both small and large
objects, as well as improvement in the overall performance in
terms of the mean average precision.

Our qualitative analysis further revealed how a 2− 3%
average error rate is reflected in actual detections. This is well
demonstrated in Figure 14 where detections of several complex
traffic-sign categories are depicted. Overall, we showed that
the deep learning based approach is able to achieve extremely
good performance for many traffic-sign categories, including
several complex ones with large intra-class variability. Large
error rates for problematic traffic-sign categories are mostly
due to similarity to other categories, wide viewing angles
and large occlusions. However, those issues do not pose a
problem for the application of maintaining an accurate record
of the traffic-sign inventory. They can be mitigated by the
detection over several video frames or matching 3D locations
from stereo cameras. In particular, this system is already being
deployed for traffic-sign inventory management on Slovenian
roads. However, the proposed solution is also applicable to
other problems requiring the capability of traffic-sign detection
such as autonomous driving and advanced driver-assistance
systems.

Despite excellent performance of the proposed approach
there is still room for improvement. Our analysis revealed that
the ideal performance is still not achieved, mostly due to sev-

eral missed detections that are being lost by the classification
network. Future improvements should focus on improving this
part of the system.

ACKNOWLEDGEMENTS

This work was in part supported by the ARRS research projects
L2-6765 (VILLarD) and J2-9433 (DIVID) and ARRS research pro-
gramme P2-0214. We would also like to thank the company DFG
Consulting d.o.o., in particular Domen Smole, Simon Jud and mag.
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