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Abstract—Hierarchical feature learning based on convolutional
neural networks (CNN) has recently shown significant potential
in various computer vision tasks. While allowing high-quality
discriminative feature learning, the downside of CNNs is the lack
of explicit structure in features, which often leads to overfitting,
absence of reconstruction from partial observations and limited
generative abilities. Explicit structure is inherent in hierarchical
compositional models, however, these lack the ability to optimize
a well-defined cost function. We propose a novel analytic model
of a basic unit in a layered hierarchical model with both
explicit compositional structure and a well-defined discriminative
cost function. Our experiments on two datasets show that the
proposed compositional model performs on a par with standard
CNNs on discriminative tasks, while, due to explicit modeling of
the structure in the feature units, affording a straight-forward
visualization of parts and faster inference due to separability of
the units.

I. INTRODUCTION

Over the last ten years, computer-vision-based object per-
ception has continuously been moving away from using hand-
crafted features like HOG [1] and SIFT [2], and significant
efforts have been made on feature learning. An important
characteristics of state-of-the-art feature learning methods [3],
[4], [5], [6] can be found in the graduated complexity of the
features as layers are added to the network, thus forming a
hierarchy.

Two paradigms have emerged in the design of hierarchical
models, that differ in the definition of a unit learned at each
layer. The first paradigm is that of compositional models [7],
[8]. We refer to models as being compositional when its
features at a layer are modeled as an explicit combination of
features in the lower layer. These models allow fast inference
via inverted indexing, inherently produce region proposals,
offer straight-forward reconstruction from partial observations
and visualization of features. However, the learning cost
function is weakly defined and is usually performed via
co-occurrence learning [7], [8]. While attempts have been
made to discriminatively re-interpret the learned reconstructive
parts [9], [10], learning discriminative parts directly remains
an open issue. On the other hand, the paradigm of convolu-
tional models has recently gained significant momentum in
feature learning. These models define the feature units at each
layer as filters, which afford learning by back-propagation.
In particular, convolutional neural networks (CNNs) [4], [3]
have emerged as a highly successful representative of this
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Figure 1. Units learned by our deep compositional network (left) and
equivalent units learned by the convolutional neural network (right).

class of hierarchical models. A longstanding criticism of CNNs
is the lack of precise spatial relationships between high-
level parts, a reason advocated to move towards viewpoint-
invariant capsule-like systems [11]. The lack of structure in
basic units in CNNs also hinders robust handling of occlusions
and missing parts [12], [10], and prohibits straight-forward vi-
sualization and understanding of networks. Approximate visu-
alization techniques have been developed [13], [14], [15], but
further attempts at understanding CNNs uncovered unintuitive
behavior when small input perturbations were applied [16].
Recent efforts have also been made toward approximation of
the learned filters to reduce the computational complexity of
the learned CNNs [17], an issue typically addressed by brute
force CPU/GPU power increase.

In this paper we propose a novel form of the unit in a deep
hierarchical model with an explicit compositional structure
(Fig. 1). While stacked weights in deep networks can be
considered as compositions, they lack an explicit structure that
could further expose and leverage compositional properties.
Our proposed unit exposes an explicit structure of composi-
tions as a parametric model over spatial clustering of responses
from the lower layer, and can directly be embedded into



the learning framework used in CNNs. This allows learning
of hierarchical compositional models with a well-defined,
potentially discriminative, cost function similar to that used
in convolutional neural networks, and retains the benefits of
compositional models, such as a precise encoding of the spatial
relationship between parts. We derive the necessary equations
for back-propagation and propose a compositional model
trained by a discriminative cost function, which is the major
contribution of our paper. We experimentally evaluate the
proposed model on CIFAR-10 [18] and PaCMan [19] datasets
and show that our model achieves comparable performance to
a standard CNN, while allowing simple compositional mean-
reconstruction of parts. Since our units are separable by design,
we demonstrate a significant speedup in inference compared
to CNNs.

The paper is structured as follows: Section II describes our
model, Section III provides experimental evaluation, in Sec-
tion IV visualization and speed-up in inference are presented,
and conclusions are drawn in Section V.

II. DEEP COMPOSITIONAL NETWORK

We first provide notation for deep convolutional neural
networks and then derive our compositional network. A neu-
ron activation in a deep neural network is modeled with
a linear function wrapped inside a specific non-linearity:
yi = f(

∑
s ws · xs + bs), with output activation y, input ac-

tivations x, bias b and weights w determining a linear com-
bination of input activations further modified by a non-linear
function f(·). In the image domain the neuron activations are
organized in a 3-dimensional matrix N ×M × S, where two
dimensions, N × M , represent the image or feature plane,
and the third dimension, S represents channels. With the
introduction of weight-sharing along the 2D feature plane, the
convolutional neural network models the neuron’s activation
function Y as:

Yi = f(
∑

s
Ws ∗Xs + bs), (1)

where ∗ is a convolution of Xs, the N ×M activation map
from the s-th channel, with Ws, the Kw×Kh weights for the
s-th channel. The Ws are basic units in the CNNs that take
the form of convolution filters and have to be learned from the
data. The convolutions give an N−Kw×M−Kh output map
for each channel. Element-wise summation over the channels
represents the final activation map Yi after non-linearity f(·)
is applied. Typically, several activation maps Yi are created,
and the network is organized in layers, such that Xs in the
l-th layer is the output activation Yi from l − 1 layer.

We propose a new basic unit that explicitly models the
composition of a feature. We define it as a weighted Gaussian
component:

W̃k = w̃kG(θk), (2)

with weight w̃k and Gaussian parameters θk = [~µk, σk],
containing mean ~µk and variance σ2

k. Multiple W̃k can be
applied to the same input channel s, but we omit this in the
notation in the interest of clarity. Units W̃k take the form of

convolution filters and have Kw×Kh elements. We therefore
define G(·) as a two dimensional matrix of the same size with
2-dimensional index ~x over Kw ×Kh elements:

G(~x, θ) =
1√

2πσ2
exp(−‖~x− ~µ‖

2

2σ2
). (3)

We use two dimensional means but single dimensional vari-
ance for simplification. Commonly used unit sizes are 3× 3,
5×5 or 9×9; however, such small sizes can lead to significant
discretization errors in G(~x, θk). We avoid this by replacing
the normalization factor computed in continuous space with
one computed in the discretized space, leading to our final
distribution function G(~x, θ):

G(~x, θ) =
1

N(θ)
g(~x, θ), (4)

where g(~x, θ) is a non-normalized Gaussian distribution and
N(θ) is a sum over this non-normalized Gaussian distribution
computed for a filter of size Kw ×Kh:

N(θ) =
∑
~x g(~x, θ), g(~x, θ) = exp(−‖~x−~µ‖

2

2σ2 ). (5)

A new, compositional unit can be embedded into a CNN by
grouping multiple instances applied to the same input channel
s and deriving the basic CNN unit from Eq. (1):

Ws =
∑

k
W̃k =

∑
k
w̃kG(θk). (6)

This proposed model for each Ws unit is similar to a standard
Gaussian mixture model, but we do not enforce

∑
w̃ = 1 and

component weights can take any value, w̃ ∈ [−∞,∞]. Having
negative weights is important to approximate edges as dif-
ferences between neighboring components, whereas positive
components can be interpreted as requirements for a presence
of a feature and negative components as requirements for an
absence of a feature. In principle, this could be satisfied by
normalizing the sum of absolute weights,

∑
|w̃| = 1, but

this would significantly complicate the gradient computation
without any performance gain.

Learning an individual unit W̃k consists of learning its
parameters for the Gaussian distribution, mean ~µk and variance
σ2
k, together with the weight w̃k. The number of units, i.e., the

number of Gaussian components per input channel, can be
considered as a hyper-parameter. Learning can be performed
in the same way as in convolutional networks via gradient
descent. Parameters are optimized by computing the gradients
w.r.t. the cost function C(y, ȳ), which leads to three different
types of gradients. By applying the chain rule we can define
the gradient for the component weight ∂C/∂w̃k as a dot-product
of back-propagated error and the input feature Xs convolved
with the k-th Gaussian component:

∂C

∂w̃k
=

∑
n,m

∂C

∂Z
· ∂Z
∂w̃k

=
∑
n,m

∂C

∂Z
·
∑
~x

Xs ∗G(~x, θ), (7)

where Z =
∑
sWs ∗Xs + bs and ∂C/∂Z is back-propagated

error. Note, that only the s-th channel of input features are
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Figure 2. Classification results on CIFAR-10 database.

used since the weight component w̃k appears only in Ws. The
back-propagated error for layer l is computed the same as in
a standard convolutional network:

∂C

∂Zls
=

∂C

∂Zl+1
s

∗ rot(Ws), (8)

where the back-propagated error from the higher layer l+1 is
convolved with the 180° rotated unit (a weight filter) rot(Ws)
which can be computed from Eq. 6. We can similarly apply
the chain rule to obtain the gradient for the mean and the
variance:

∂C

∂µk
=

∑
n,m

∂C

∂Z
·
∑
~x

Xs ∗
∂G(~x, θk)

∂µk
, (9)

∂C

∂σk
=

∑
n,m

∂C

∂Z
·
∑
~x

Xs ∗
∂G(~x, θk)

∂σk
, (10)

where the derivatives of the Gaussian are:

∂G(~x, θk)

∂µk
= w̃k

N(θk) · g(~x,θk)∂µk
− g(~x, θk) · ∂N(θk)

∂µk

[N(θk)]
2 , (11)

∂G(~x, θk)

∂σk
= w̃k

N(θk) · g(~x,θk)∂σk
− g(~x, θk) · ∂N(θk)

∂σk

[N(θk)]
2 . (12)

III. CLASSIFICATION PERFORMANCE

This section analyzes the discriminative properties of our
deep compositional network. The method is evaluated on two
classification datasets, CIFAR-10 [18] and PaCMan [19].

The evaluation on both datasets is performed with a network
containing three layers. The first two layers are convolu-
tional/compositional and the third one is fully-connected. We
use soft-max with multinominal logistic loss as the cost
function. Either three-channel RGB (CIFAR-10) or a single-
channel gray-scale image (PaCMan) is used as input data
with zero-mean normalization. The data is not normalized to
unit variance, since between each layer we use ReLU non-
linearity which is less sensitive to data variance. Note that
we use slightly bigger filters (basic units) in our network, but
use fewer components to approximately match the number of
parameters with the standard CNN model. We also restrict

Table I
CONFIGURATION TABLE FOR NEURAL NETWORK USED ON CIFAR-10

DATABASE.
Deep Compositional standard

Network (our) CNN
num stride unit/filter num unit/filter

features size components size

conv1 32 1 7× 7 2× 2 5× 5
relu1 / 1 / / /
pool1 1 3× 3

conv2 32 1 9× 9 3× 3 5× 5
relu2 / 1 / / /
pool2 2 3× 3

ip1 10 / 15× 15 / 15× 15

components’ positions and standard deviation to ensure deriva-
tive of the resulting filters would not have non-zero values
outside of the valid window. This also prevents collapsing to
a single point and stalling. Positions are restricted to at least
1.5 pixels away from the borders of the valid window, and
standard deviations are restricted to σs > 0.5. We apply the
AdaDelta [20] with momentum of 0.8 and no weight-decay to
achieve proper behavior in gradient descent.

A. Classification on CIFAR-10

The CIFAR-10 [18] dataset consists of 60.000 images split
into 50.000 training and 10.000 testing images. We perform
training with a mini-batch size of 100 images per iteration and
run learning for 5000 iterations. A detailed configuration of
the network used is shown in Table I. Comparing performance
of both models, shown in Fig. 2, we can see the same accuracy
with both achieving slightly less than 70% on testing set.
The left-most two graphs reveal similar learning rates with
standard CNN learning slightly faster, but they both converge
to a similar loss in the end.

B. Classification on PaCMan database

The proposed compositional network was also evaluated
on the PaCMan dataset [19]. This dataset contains gray-scale
and depth images generated from 3D models of 20 categories
of various kitchen objects, with each category containing 20
different instances of objects. Each object is captured at dense,
regular viewpoint intervals, but we use only 28 different
viewpoints, summing to a total of around 50.000 images.
We use only gray-scale images. The dataset was split into
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Figure 3. Evaluation results on PaCMan database. Note, only a subset of first-layer and second-layer features are shown. Each first-layer feature consists of
one filter, and each second-layer feature consists of 16 filters. Visualized weights trained with Gaussian modeling have component’s means depicted as small
circles, and variance as big circle. Note, background color within each feature (i.e. individual patches in first layer and patches within column for the second
layer) is considered as zero value. Background colors differ between different features due to different max and min range of weights.

Table II
CONFIGURATION TABLE FOR NEURAL NETWORK USED ON PACMAN

DATABASE.
Deep Compositional standard

Network (our) CNN
num stride unit/filter num unit/filter

features size components size

conv1 16 1 9× 9 2× 2 5× 5
relu1 / 1 / / /
pool1 1 3× 3

conv2 16 1 9× 9 2× 2 5× 5
relu2 / 1 / / /
pool2 2 3× 3

ip1 20 / 15× 15 / 15× 15

approximately 25.000 samples for training and 25.000 for
testing. We ensure that all viewpoints of the same object are in
the same split and each category has proportionally the same
number of objects in testing and training. The input images
are resized to 128× 96 to fit the network into the GPU. The
network configuration as shown in Table II is slightly modified
to accommodate higher resolution images.

Fig. 3 confirms that the proposed compositional network
achieves discriminative performance on a par with the CNN
– both models attain an accuracy of 64-67%.

We also visualize CNN filters and units in our network
for features on the first and the second layer in Fig. 3. The
units in our network applied to the same input channel are
visualized in a single filter based on Eq. (6), while individual
component’s means are plotted as small circles, and variances
as large circles. Filters in the standard CNN have a certain

structure but they are still noisy and incoherent. It would
also be difficult to capture this structure without human
interpretation. On the other hand, our unit with Gaussian
models explicitly captures the spatial structure as can be seen
in the first-layer filters. Many components converge to the
same location and the configuration of components directly
points to different edge or blob detectors. On the second layer
only a small set of components have high weights, indicating
that most are irrelevant for the final classification, offering
further simplifications of the network. Compared to the filters
from the standard CNN they are more compact. With Gaussian
modeling a spatial position of a sub-feature is much clearer
and easily determined, and, as we show in the next section,
can be further utilized.

IV. UTILIZING COMPOSITIONAL REPRESENTATION

In this section we demonstrate two advantages of having
a rich, compositional representation. We propose a novel
visualization of deep networks using mean reconstruction of
compositions and demonstrate the inference speed-up due to
inherent kernel separability in compositions.

A. Visualization by mean reconstruction

Feature visualization in standard deep networks is difficult
due to lack of structure. Visualization is thus usually per-
formed indirectly by deconvolution [13] or optimization of
input pixels to maximize the output activations [14], [15]. Such
visualization techniques are applicable to our model as well,
but having explicit compositions enables exploration of more
straight-forward visualization techniques.
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A feature can be visualized by finding an image that
produces a maximum output response for its unit. Based on
Eq. (1) a maximum response is obtained when all sub-features
match to specific patterns defined in weights Ws. In our
model each Ws consists of individual compositions W̃k, thus
the premise can further be extended to having a maximum
response when individual sub-features are present at specific
position, i.e., at a mean of a Gaussian in our case. We propose
to visualize a single feature by recursively projecting compo-
sitions top-down to image pixels by following (indexing) the
corresponding means in network units. We term this process
as mean reconstruction, similar to visualization techniques for
hierarchical compositions [21].

During each step of back-projection, several properties of
the compositions need to be correctly accounted for: (a) ex-
pected uncertainty of the position of a sub-feature (variance),
(b) the importance of a sub-feature (weight) and (c) requested
presence or absence of a sub-feature (weight sign). The
uncertainty is defined by a Gaussian variance and grows with
each step of back-projection. We account for this by summing
the variances along each step to arrive at the final uncertainty
at the pixel level. The importance of a sub-feature is accounted
for by multiplying the magnitude of weight at each back-
projected step. We consider only sub-feature components with
a positive weight, i.e., ones that request the presence of a
sub-feature. Sub-feature components with negative weights are
ignored. This is applied to all layers, except the first one, since
negative values of features are truncated by the ReLU layer
on all layers except for the first one. We therefore consider the
first layer as a special case and use compositions with negative
weights as well.

Positive and negative weights in the first layer in most cases
define edges. But edges are defined indirectly since means
in Gaussians define positions of blobs, i.e., regions with low
intensity or high intensity values. Edges can be inferred from
neighboring blobs with opposing signs and are free to occur
anywhere between blobs, either as a smooth transition or a
sharp edge. Consequently, after all compositions are back-
projected from the top to the bottom we are left with two
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sets of Gaussian distributions, ones with the positive sign and
ones with the negative sign. They are visualized in the second
and the fourth row of Fig. 4. This visualization is performed by
summing over all positive and negative distributions for each
pixel. We refer to a map obtained this way as a reconstructed
blobs or distribution map.

We can further visualize Gaussian compositions by their
boundaries that separate positive and negative components. We
achieve this by translating the problem to a graph-cut problem,
where pixels are represented as a graphical model connected
to neighbors to either a sink or a source. We use a sum over
all positive distributions for one pixel as a cost for sink and
a sum over all negative distributions as a cost for source. The
cost for the two neighboring pixels is considered as a squared
difference between the distribution maps for that pixel. The
optimal edge between them is obtained by finding a minimal
cut that maximizes the flow in a graph. We highlight edges
with strong borders between positive and negative distributions
by multiplying with a difference of neighboring pixels in the
distribution maps. The resulting image is finally re-sized and
is visualized in the first and the third row of Fig. 4.

The proposed visualization is applied to the second layer
features trained on PaCMan database. Most features are still
representing edges at different orientations, but some (e.g.,
4th and 8th feature) are compositions of edges in form of
corners as is evident from the reconstructed boundaries. The
features are visualized on a pruned model, i.e, we merged
any overlapping compositions in each sub-feature to remove
duplicate components, and compositions with weights below a
2% of a maximal weight are discarded since they do not con-
tribute to the final score. With pruning we removed or merged
approximately 400 out of 1024 Gaussians at the second layer,
while reducing the score by less than 1%. This pruning process
is another benefit of our explicit compositions, which can lead
to a network with significantly reduced complexity.

B. Inference speed-up with separable filters

Another advantage of our deep compositional network is the
ability to decompose the units into separate filters by leverag-
ing the separability of Gaussians to speed-up the inference. In
this case, the complexity for the forward pass at a single layer
is reduced from O(S ·F ·W ·H ·Kw ·Kh) for the standard CNN
to O(S ·F ·G·(W ·H ·(Kw+Kh)+c)) for implementation with
separable filters, with S sub-features, F features, G number



of Gaussian components per sub-feature, W ×H feature map
size, Kw×Kh kernel filter size and c as an additional overhead
in a separable filter implementation. An important factor in
this separable implementation is the number of Gaussian
components G, but we can reduce this number with the same
pruning process described in the previous section, where we
reduced the number of components by almost a half.

Based on time complexities a separable implementation
should gain significant speed-up for G·(Kw+Kh) < Kw ·Kh.
We evaluate this separable implementation on a pruned PaC-
Man model considering different kernel sizes. Results are
depicted in Fig. 5. We achieve a slight speed-up at kernel sizes
of 10 × 10 while a significant speed-up of 3-fold or more is
achieved with kernel sizes of 15× 15 pixels or bigger.

We use the Caffe implementation with convolution as matrix
multiplication using the CBLAS library and implement sep-
arable convolution as multiple calls to AXPY methods using
the same CBLAS library. The demonstrated speed-up factors
are fairly conservative considering the Caffe implementation
performs 2D convolution with a fully optimized single call
while our implementation adds some overhead with multiple
calls. We evaluated only a CPU implementation and enforced a
single-core process. Since both implementations have a similar
level of parallelism it is fair to assume that speed-up can be
maintained in multicore CPU or GPU implementations as well.

V. CONCLUSION

A new deep compositional network is introduced in this
paper. The new network is based on a novel form of an
element unit (a filter) that applies a parametric model. We
demonstrated that parametrization with Gaussian distributions
retains the spatial structure of compositions of features and
affords learning by optimizing a well-defined cost function.
We derived the necessary equations for back-propagation and
embedded our model into a deep neural network framework
to evaluate discriminative learning of compositional parts on
CIFAR-10 and PaCMan datasets. We showed that having a
compositional representation is advantageous for deep net-
works by presenting a novel visualization and an inference
speed-up. We performed visualization of deep network fea-
tures using a mean reconstruction of parts. Other visualization
techniques for deep networks typically rely on approximation
with de-convolution [13] or a complex optimization [14], and
need to process additional data. In contrast, the compositional
representation allowed us to generate a representation of a
feature with a fairly simple technique that uses only the model
itself and no additional data. A simpler visualization and the
3-fold speed-up of inference speak of the advantages of using
the new parametric units in deep networks with a convolutional
layered architecture.

In the future we plan to explore other venues opened by
combining compositional and convolutional hierarchies, such
as, pre-training with co-occurrence statistics, performing gen-
erative and discriminative learning concurrently, and further

leveraging inverted indexing of parts for inference.
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