
ERK'2015, Portorož, B:45-48 45

Efficient spring system optimization for part-based visual
tracking

Alan Lukežič , Luka Čehovin , Matej Kristan
Faculty of Computer and Information Science, University of Ljubljana
alan.lukezic@gmail.com, {luka.cehovin, matej.kristan}@fri.uni-lj.si

Abstract
Part-based trackers typically use visual and geometric
constraints to find the most optimal positions of the parts
in the constellation. Recently, spring systems was suc-
cessfully applied to model these constraints. In this paper
we propose an optimization method developed for multi-
dimensional spring systems, which can be integrated in
the part-based tracking model. The experimental analy-
sis shows that our optimization method outperforms the
conjugated gradient descend optimization in terms of con-
vergence speed, accuracy and numerical stability.

1 Introduction
Visual object tracking is a fundamental computer vision
problem where a trajectory of the object is estimated thr-
ough the sequence of frames. The problem is challenging
for numerous reasons, including appearance change (e.g.,
object deformation), occlusion (or self-occlusion), object
or camera motion, illumination change of the scene and
size change of the object. Visual trackers can be divided
into two groups, depending on how they model the tar-
get, e.g., holistic and part-based trackers. Holistic track-
ers present the target as a whole, while part-based track-
ers present the target with the constellation of several
patches. Part-based trackers are known by the robust per-
formance and they are typically efficient in handling the
occlusion or target deformation [3, 2] and have demon-
strated top performance on recent visual tracking chal-
lenges [5, 8]. Part-based trackers typically localize the
target by optimizing a tradeoff between the visual and
geometric agreement between the model and image. For
tractability, most of the recent trackers use star-based topol-
ogy, e.g. [6, 2, 9, 4], or local connectivity, e.g. [3], instead
of a fully-connected constellation [1], but at a cost of a re-
duced power of the geometric model.

Recently, we presented a deformable-part tracking as
the optimization of the spring system [7]. Optimization
was formulated as the energy minimization of the spring
system, by the conjugated gradient descend. In this paper
we propose a novel optimization for a multi-dimensional
spring system energy minimization, called the iterative
direct approach (IDA).

2 Problem formulation
Part-based trackers represent the target as a geometrically
constrained constellation ofNp parts Xt = {x(i)

t }i=1:Np .
Each part x(i)

t is specified by the part visual model (tem-
plate) z

(i)
t . The probability of a constellation being at

state Xt conditioned on the measurements Yt and pa-
rameters of the deformation model Θ is decomposed into

p(Xt|Yt,Θ) ∝ p(Yt|Xt,Θ)p(Xt|Θ). (1)

The density p(Yt|Xt,Θ) is the measurement constraint
term, reflecting the agreement of measurements with the
current state Xt of constellation, whereas the second term,
p(Xt|Θ), reflects the agreement of the constellation with
the geometric constraints.

Geometric constraints. The constellation is speci-
fied by a set of links (i, j) ∈ L indexing the connected
pairs of parts (Figure 1). The parts and links form an
undirected graph, and the joint pdf over the part states
can be factored over the links as

p(Xt|Θ) =
∏

(i,j)∈L
φ(||d(i,j)t ||;µ(i,j), k(i,j)), (2)

where d(i,j)t = x
(i)
t − x

(j)
t is a difference in positions

of the linked parts, µ(i,j) is the preferred distance be-
tween the pair of parts and k(i,j) is the intensity of this
constraint. The factors in (2) are defined as Gaussians
φ(·;µ, k) with mean µ and variance k to reflect the prop-
erty that deviations from the preferred distances should
decrease the probability (2).

Measurement constraints. Given a fixed part state,
x
(i)
t , the measurement at that part is independent from

the states of other parts and the measurement probability
decomposes into a product of per-part visual likelihoods

p(Yt|Xt,Θ) =
∏

i=1:Np

p(y
(i)
t |x

(i)
t ,Θ). (3)

The visual likelihoods are chosen from the same family
of pdfs as factors in (2) for tractability. Let x(i)

tA be the
position in vicinity of x(i)

t that maximizes the similarity
of the visual model z(i)t and the measurement y(i)

t (see
Figure 1, left). The visual likelihood can then be defined
as a Gaussian p(y(i), |x(i),Θ) = φ(||d(i)t ||; 0, k(i)) where
d
(i)
t = x

(i)
t −x

(i)
tA is the difference of the part current state

46

and its visually-ideal position, and k(i) is the intensity
of this constraint. The visual likelihood thus reflects the
agreement of the visual model z(i) with the measurement
y(i) at position x

(i)
t .

The geometric and measurement constraints (2 and 3)
represent lead to an exponential posterior

p(Xt|Yt,Θ) ∝ exp(−E). (4)

Maximization of the posterior (4) is equivalent to the min-
imization of the spring system energy, defined as

E =
1

2

∑
i=1:Np

k
(i)
t

∥∥∥d(i)t

∥∥∥2+
∑
i,j∈L

k
(i,j)
t (µ

(i,j)
t −

∥∥∥d(i,j)t

∥∥∥)
2

,

(5)
where NP represents the number of static (anchor) parts
in a spring system, k(i)t and

∥∥∥d(i)t

∥∥∥ represent the stiffness
and length of i-th static spring, respectively. Set of dy-
namic nodes connected to i-th dynamic node is denoted
as L and stiffness of the spring connecting i-th and j-th
dynamic nodes is denoted as k(i,j)t . The nominal length
of that spring is denoted as µ(i,j)

t and current length as∥∥∥d(i,j)t

∥∥∥. The described terms are illustrated on a spring
system in Figure 1. Note that the static nodes repre-
sent the measurements constraints and they remain on
fixed positions in the image during the optimization. Dy-
namic nodes represent the geometric constraints and they
change their positions during the optimization. In Fig-
ure 1 dynamic nodes are denoted as circles, while static
nodes are denoted as black squares.

Constellation model The corresponding spring system

Static
spring

Dynamic
spring

Figure 1: Example of a constellation model with rectangular
parts and arrows pointing to most visually similar positions
(left) and the dual form corresponding to a spring system (right).

3 Efficient spring system optimization
Our approach proceeds iteratively minimizes the energy
of a spring system by decomposing the 2D spring system
into two 1D independent systems (Figure 2), minimizing
the separate energies in a closed form and re-composing
the 2D system. This procedure is iterated until conver-
gence. In the following an efficient algebraic closed-form
solution for a 1D spring system is derived.

The forces at springs of a 1D system are defined as

Fsprings = −K(Ax− L), (6)

where K = diag([k1, · · · , kNsprings
]) is a diagonal matrix

of spring stiffness coefficients. The terms in the paren-
thesis in (6) represent the spring displacements, where

1D spring
system

1D spring
system

2D spring
system

Figure 2: Example of decomposition of a 2-D spring system
with 4 dynamic (circles) and 4 static nodes (crosses) on two 1-
D spring systems. Each 1-D spring system can be solved in a
closed-form.

x is a vector of the 1-D positions of the nodes, L =
[l1, · · · , lN]T is the current-lenght vector , where li is the
length of the i-ith spring. Elements in the vector of posi-
tions x are arranged in the following form

x =

[
xdyn
xstat

]
, (7)

where xdyn and xstat are 1D positions of the dynamic
and static nodes, respectively. The connectivity matrix
A represents the directed connections between the nodes
with the dimensionality Nsprings ×Nnodes. If i-th spring
connects a pair of nodes {ni1, ni2}, than the element aij
of the matrix A is defined as

aij =

 1 ; j ≡ ni1
−1 ; j ≡ ni2
0 ; otherwise

(8)

Equation (6) can be rewritten in to the form Fsprings =
−KAx + KL. The forces in the nodes are given by left-
multiplying by AT , obtaining an equation

Fnodes = −AT KAx + AT KL. (9)

Equilibrium of the system is reached when forces in nodes
vanish, resulting in the following linear system

AT KAx = AT KL. (10)

For efficient calculation of x two more matrices are de-
fined, K̂ = AT KA and C = AT K. Since the nodes posi-
tion vector x is defined in a special form (7), the matrix
K̂ can be written as

K̂ =

[
K̂dyn K̂stat

K̂rem

]
. (11)

The remainder matrix K̂rem does not affect computation
of static nodes and is ignored. The matrix K̂ has the di-
mensionalityNnodes×Nnodes and matrix K̂dyn is defined
as

K̂dyn =

 k̂1,1 · · · k̂1,Ndyn

... · · ·
...

k̂Ndyn,1 · · · k̂Ndyn,Ndyn

 , (12)

47

where element k̂i,j represents an element from K̂ and
Ndyn is the number of dynamic nodes. The matrix K̂stat

is defined in the same manner as K̂dyn,

K̂stat =

 k̂1,Ndyn+1
· · · k̂1,Nnodes

... · · ·
...

k̂Ndyn,Ndyn+1
· · · k̂Ndyn,Nnodes

 . (13)

Note that the dimensions of the matrix K̂stat are Ndyn ×
Nstat, where Nstat is the number of static nodes in the
spring system. The matrix C has the dimensionallity
Nnodes×Nsprings and it can be, similarly as K̂, written in
to the form C =

[
CT

dyn,C
T
stat

]T
. Following the notation

in (12) and (13) the elements of the matrix C are denoted
as ci,j and Cdyn is defined as

Cdyn =

 c1,1 · · · c1,Nsprings

... · · ·
...

cNdyn,1 · · · cNdyn,Nsprings

 . (14)

As before, we can ignore Cstat since it does not enter
computation of the dynamic nodes positions. Using the
matrices K̂ and C, the spring system from (10) can be
written as K̂x = CL. If we take into account that static
nodes do not change their positions during the optimiza-
tion the system can be decomposed into the form

K̂dynxdyn + K̂statxstat = CdynL. (15)

The closed-form solution for the dynamic nodes is there-
fore

xdyn = K̂
−1
dyn(CdynL− K̂statxstat). (16)

To summarize our iterative direct approach (IDA): At
each iteration, 2D system is decomposed into two 1D sys-
tems, each system is solved by (16) and then the 2D sys-
tem is re-assembled. This process is iterated until con-
vergence (Algorithm 1). Note that the term K̂statxstat is
independent from the dynamic nodes and can be precom-
puted before entering the iterations.

Algorithm 1 : Optimization of a 2-D spring system.
Require:

Positions of the dynamic xdyn and static nodes xstat, stiffness
vector k and adjacency matrix A, defined as in (8).

Ensure:
New positions of the dynamic nodes xdyn.

Procedure:
1: Construct stiffness matrix K = diag(k).
2: Calculate matrices K̂ = ATKA and C = ATK.
3: Compose K̂dyn, K̂stat, and Cdyn according to (12), (13), (14).
4: Calculate the product K̂statxstat for each dimension.
5: while stop condition do
6: For each dimension do:
7: Extract positions of dynamic nodes for a selected dimension

from xdyn.
8: Calculate vector of current spring lengths L (the distance be-

tween connected nodes) along selected dimension.
9: Solve (16) and update xdyn.

10: end while

4 Experimental analysis
This section compares the standard baseline method, i.e.,
the conjugated gradient descend (CGD) with the proposed
iterated direct approach (IDA). To allow controlled ex-
perimental analysis of the optimization approach, a sim-
ulated fully-connected spring system with four dynamic
nodes and four anchor nodes was used. We have ana-
lyzed the performance of the optimization methods by
averaging over 100,000 randomly generated spring sys-
tems and their displacements. The positions of all nodes
were each time randomly perturbed around the initial po-
sitions. Four dynamic nodes were initialized on the po-
sitions (0,0), (0,1), (1,0) and (1,1). Each node was dis-
placed by the vector d = [dx, dy], where dx and dy were
sampled from uniform distribution U([−0.5; 0.5]). Each
anchor node was set by displacing the corresponding dy-
namic node by the vector b = [bx, by], where bx and by
were sampled from uniform distribution U([−0.25; 0.25]).
The stiffness of i-th dynamic spring was set as ki =
(σdi)

−2, where di represents the length of the spring and
σ = 0.1 is the size change parameter. The stiffness of j-
th static spring was set as kj = 1

2 + ujddyn, where ddyn
represents the average stiffness of the dynamic springs
and uj is the average number sampled from the uniform
distribution U([0; 1]). The performance of the optimiza-
tion method was measured by: (i) the number of itera-
tions and time needed to reach the stable state and (ii) the
remaining energy of the optimized spring system.

Table 1 summarizes the performance analysis of CGD
and IDA. The first and second columns represent average,
standard deviation and median of the number of iterations
needed to reach the stable state and the amount of en-
ergy that remains in the spring system after the optimiza-
tion, respectively. The last column shows average time
(in milliseconds) needed for convergence of a method
(both methods were implemented in Matlab). The results
show that the proposed IDA converges is half as many
iterations compared to CGD. The remaining energy in a
spring system does not change much between methods,
which means the both methods reach a global minimum.
This is not surprising due to convexity of the optimization
function. Figure 3 shows how energy of the spring sys-
tem drops in each iteration for both methods. It is clear
that energy at IDA drops much faster in the beginning
of the optimization which is key reason for fast perfor-
mance. The proposed IDA is in average approximately
more than three-times faster than the CGD. With less than
3ms needed for optimization a single spring system, this
method can be used in tracking tasks without entailing a
significant overhead.

Number of iterations Energy Time
Method Avg Std Median Avg Std Median Avg [ms]
IDA 12.75 9.32 10 1.22 3.34 0.83 2.92
CGD 28.01 9.90 28 1.28 3.34 0.83 9.72

Table 1: Comparison of the proposed IDA and CGD.

We have also analyzed the average time required for
the initialization and for iterating phases of both meth-

48

0 5 10 15 20 25 30 35 40
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Average energy
before optimization

Number of iterations

A
v
e
ra

g
e
 e

n
e
rg

y

IDA
CGD

Figure 3: Spring system energy for 40 iteration. Experiment is
averaged over 10,000 spring systems.

ods. The first column in Table 2 shows average time in
milliseconds for each phase. The results show that initial-
ization of the optimization method is faster at IDA. The
last column shows the time needed for a single iteration,
which is also faster at IDA. Note that the Table 2 was ob-
tained with the same experiment settings as the Table 1.

Average time [ms]
Method Init Iterations Total Avg. Iterations ms per-iteration
IDA 0.18 2.74 2.92 12.75 0.23 (0.215)
CGD 0.35 9.37 9.72 28.01 0.35 (0.347)

Table 2: Average time for method initialization, iterations and
sum of both is given in the table. Last column represent the av-
erage time for one iteration. Number in parenthesis is the aver-
age time for one iteration without considering the initialization
phase.

We have also observed that the proposed IDA is nu-
merically more stable than the CGD. Figure 4 shows an
example of a spring system for which CGD does not reach
the optimal state. The spring system consists of four
static and four dynamic nodes. Black lines represent dy-
namic springs of an initial spring system and the gray
lines represent dynamic springs of spring system after op-
timization. Small circles denote the dynamic nodes. Cen-
ters of the larger circles (crosses) represent anchor nodes
and the radius of circles represent the variance of each
node. The dotted lines are static springs before and after
optimization. The energy of the final optimized spring
system is also given in the figures. Note that the IDA
converged to a stable state with much lower energy, while
CGD method did not reach that state. The poor perfor-
mance of CGD can be explained with the initial positions
of the nodes. Since there are two nodes very close to each
other, the CGD becomes numerically unstable. There is
also a huge difference in number of steps needed for ter-
minating the optimization e.g., the proposed IDA con-
verged in only 5 iterations whereas the CGD required 471
iterations. Note that the unstable behavior of CGD was
automatically detected during the experiment and these
measurement were not considered in the calculation in
Table 1.

105 110 115 120 125 130

42

44

46

48

50

52

54

56

58

IDA, E=1.245

105 110 115 120 125 130

42

44

46

48

50

52

54

56

58

CGD, E=9.359

Figure 4: Comparison of both optimization methods on a nu-
merically unstable initial spring system. The black color rep-
resents initial and the gray color represents optimized spring
system.

5 Conclusion
An efficient optimization of a deformable parts model
was proposed. The cost function is formulated as an equiv-
alent spring system and an iterative direct approach (IDA)
is derived for minimizing the energy of such a system.
Experimental analysis showed that IDA is more than three-
times faster and numerically more stable than the conju-
gate gradient descent on randomly generated, fully con-
nected spring systems. In average, it took less than 3ms
for the optimization, which is important for real-time per-
formance in modern trackers.

References
[1] N. M. Artner, A. Ion, and W. G. Kropatsch. Multi-scale

2d tracking of articulated objects using hierarchical spring
systems. Patt. Recogn., 44(4):800–810, 2011.

[2] Z. Cai, L. Wen, Z. Lei, N. Vasconcelos, and S. Li. Ro-
bust deformable and occluded object tracking with dynamic
graph. IEEE Trans. Image Proc., PP(99):1–1, 2014.

[3] L. Cehovin, M. Kristan, and A. Leonardis. Robust vi-
sual tracking using an adaptive coupled-layer visual model.
IEEE Trans. Pattern Anal. Mach. Intell., 35(4):941–953,
Apr. 2013.

[4] M. Godec, P. M. Roth, and H. Bischof. Hough-based track-
ing of non-rigid objects. Comp. Vis. Image Understanding,
117(10):1245–1256, 2013.

[5] M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas,
L. Čehovin, G. Nebehay, T. Vojir, and G. et al. Fernandez.
The visual object tracking vot2014 challenge results. In
Proc. European Conf. Computer Vision, 2014.

[6] J. Kwon and K. M. Lee. Tracking by sampling and inte-
gratingmultiple trackers. IEEE Trans. Pattern Anal. Mach.
Intell., 36(7):1428–1441, July 2014.

[7] A. Lukežič, L. Čehovin, and M. Kristan. A two-layer
spring-system-based deformable parts model for visual
tracking. Comp. Vis. Winter Workshop, February 2015.

[8] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A
benchmark. In Comp. Vis. Patt. Recognition, 2013.

[9] R. Yao, Q. Shi, C. Shen, Y. Zhang, and A. van den Hen-
gel. Part-based visual tracking with online latent structural
learning. In Comp. Vis. Patt. Recognition, pages 2363–
2370, June 2013.

