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Abstract— We propose a method for visual robot localization
using a panoramic image volume as the representation from
which we can generate views from virtual viewpoints and
match them to the current view. We use a geometric image-
based rendering formalism in combination with a subspace
representation of images, which allows us to synthesize views
at arbitrary virtual viewpoints from a compact low-dimensional
representation.

Index Terms— visual localization, panoramic images, subspace
representation, mobile robots

I. INTRODUCTION

Visual information is widely used for representing the
environment and for estimating the spatial orientation of
mobile robots [1]. The internal representation of the en-
vironment typically consists of a 3D model of the world,
where spatial coordinates of points in space are usually
obtained using geometric computations based on local fea-
tures [2]. This approach makes localization less dependent
on the number of training locations, however, such a rep-
resentation is rather sparse and prone to numerical errors.
Alternatively, appearance-based models which use local or
global appearance [3], [4] require no geometry computation
and can work even for environments where feature detection
or feature matching fail. However, these methods generally
require training images taken at a large number of locations
to densely cover the environment.

In this paper we propose a method that combines the
simplicity and power of global appearance representations
with a geometric model for image synthesis in order to extend
the range of position estimation to a larger area around the
explored trajectory. This method uses a subspace representa-
tion of a panoramic image volume, which, combined with the
geometric image-based rendering (IBR) formalism, allows to
synthesize and compare views at a large number of virtual
viewpoints.

In the training phase we store subspace representations
of complete images taken along a straight trajectory with
a camera pointed perpendicularly to the direction of robot’s
motion. We stack these representations into a spatio-temporal
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Fig. 1. The basic operations of the image-based rendering for localization.

volume. At the localization phase, we employ an image-
based rendering approach called X-slits rendering [5], which
allows us to create virtual views from camera locations not
included in the training set. For example, we can render
visually faithful views from the camera viewpoints that are
further away or closer to the scene than the training trajectory.
We then estimate the location of the robot directly from the
IBR parameters of the virtual view which is most similar to
the query image. Fig. 1 depicts this process. As our results
show, this method significantly extends the localization from
the reference viewpoint locations to virtually any location
which contains at least some of the elements visible from
the reference views. By applying IBR we can achieve this
without using a depth map and without any correspondences
of local features.

For a review of image based rendering methods see [6]. X-
slit rendering for visualization of novel views was described
in [5] and was recently applied for photorealistic virtual
reality applications [7].

The most related work in localization is the one by Yagi
et al. [8], where the authors extract the horizon line of the
omnidirectional image at each location and stack the lines
into a spatio-temporal representation. They infer the location
by retrieving horizon lines for viewpoints not contained in
the exploration trajectory. However, the horizon line captures
only a portion of the available information on the environment



and is therefore prone to ambiguities.

In contrast to this method, we use a full appearance-
based representation. The major drawback of using whole
images is the storage requirement needed to obtain and use
a volume of images. However, since the visual information
stored in the volume is highly redundant, one can represent
the images in a much lower dimensional subspace represen-
tation using supspace methods such as Principal Component
Analysis (PCA) [9]. PCA offers a way to achieve a compact
representation while maintaining the highest possible level
of visual reconstruction of images in the least squared error
sense. Further, its ability to retrieve an arbitrary element of the
input data, as demonstrated in e.g. [10], enables the synthesis
of virtual views in a quick and intuitive manner, performing
reconstruction and integration of only those fractions of each
reference view that are needed according to IBR parameters.

When dealing with robot localization, we typically en-
counter two scenarios: the recovery after kidnapping and
localization during continuous navigation. After being kid-
napped, the robot is at an unknown location, presumably
somewhere within a range of the previously mapped space.
In this case, we have to perform a search in an extended
portion of the search space and then find the viewpoint
parameters which generate the view that is most similar to the
current observation. Once the location has been estimated, we
predict the next location according to the heading direction
to generate only a few hypotheses in the area where the robot
is most likely positioned. In this paper we focus only on the
kidnapped robot problem.

In the next section we provide the geometrical background
of virtual view synthesis, explain how to represent the volume
in a PCA subspace, and how to perform localization with
image synthesis from local portions of reference views. In
Section III, we give experimental results of our method, and,
in Section IV, we give a conclusion and an outlook of future
work.

II. VIRTUAL VIEWS AND LOCALIZATION

A. Virtual view synthesis using the X-slits rendering

In this section we overview an IBR method called X-slits
rendering [5]. We have chosen this method for the novel
view generation because it has a geometric formalism which
allows us to easily connect the position of a virtual camera
to the position of the robot with respect to the image-based
representation of the scene. Moreover, it belongs to a group
of image-based rendering methods [6] which do not require
information about the scene depth. The method we explain
here applies to an ordinary perspective camera. With a few
modifications, it could apply to any other type of camera,
e.g., a camera equipped with a fish-eye lens or a panoramic
camera [7].

The input to the X-slits method is a sequence of images
captured on a straight trajectory. The trajectory does not have
to be an exact straight line and the images do not have to be
acquired with constant displacement, as we can use a method

from [11] to regularize the spatio-temporal volume. The X-
slits method creates virtual views composed from columns
of the input images. This composition is illustrated in Fig. 2
(a). We sample a ray § from an image at position z; into a
column 3 in the image from the virtual camera V', which is
at x, along the trajectory and d, away from the trajectory.
Note that the virtual camera cannot have the field of view any
larger than that of the input cameras.
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Fig. 2. (a) X-slits rendering and (b) normalization at depth de.

The input sequence is discrete, therefore it is likely that
we want to sample a ray § from an image at a position
which is not in the image sequence. The only solution is
to approximate this ray by another ray (' from the nearest
image in the sequence, as it is depicted in Fig. 2 (b) by the
image at the position xz;,

i = argmin|z; — (z, + d, tan(8))| . (1)
j

However, this approximation holds only at a certain depth.
We denote this depth as d. and we call it the normalization
depth. We can now compute the approximating ray 3’ given
the approximated ray (3, the normalization depth d., and the
location of the virtual view:

B = arctan <(d€ +dr) tan(f) — (@, — xl)) . Q)

de

When moving closer to or further from the scene, objects
in the scene should get bigger or smaller. Equation (2) makes
sure that the scene scales properly in the horizontal direction.
However, we also have to set the resampling function in
the vertical direction. This rescaling again depends on the



normalization depth and the distance from the trajectory, as
it is depicted in Fig. 3:

de tan(cp)) . 3)

de + d,
Note that scaling will be correct only at depth d..

¢’ = arctan (

L

Fig. 3. Vertical scaling at normalization depth de.

The parameter d. therefore influences the level of scaling
performed on an image and the smoothness of the rendered
scene. Underestimation of d. results in spatial repetition of
some scene portions on the virtual view, while by overesti-
mation some portions might not appear on the virtual view.
The method does not require any depth map of the scene,
but it assumes a single depth of scene for the whole virtual
view. We set d. either to the value of an average scene depth,
or the depth of the most dominant object visible from the
virtual viewpoint. A constant d. for a volume is a good
approximation, but in principle we can have different values
of d. for different virtual viewpoints.

The virtual camera viewpoint V is determined by its
distance from the straight trajectory and by a position of the
nearest input image x,,. We can think about x,, as a position
on a line where the optical axis of the virtual camera intersects
the straight input trajectory. This expression of the position of
V' directly determines the position of the robot with respect
to the input trajectory.

B. Image-based rendering with PCA

In the previous subsection we introduced a formal basis for
image synthesis from a set of reference views. In practice,
images in the volume contain a discrete set of rays, each
pixel holding an information of one ray. We denote the pixel
coordinates by their row r and column c. We assume that we
know the focal length f, and that the center of the image is
at row 19 and column cy. We synthesize images at virtual
viewpoints by sampling image columns from the reference
views and arranging them in order to compose virtual view.

Let A=[A1, Ag, ..., A,] be an image volume contain-
ing image matrices A;, i € [1..n]. We transform images A;
into column vectors a; and assemble them into a column
matrix A = [a1, ag, ... a,]. We denote the value at column
c and row r of images A; or virtual image V as a(,,); and
V(c, r)> TESpECtively.

Let the virtual viewpoint be at offset z,, along the trajectory,
the distance from the viewpoint to the trajectory d, and the
distance from the trajectory to the scene d.. To obtain the
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Fig. 4. (a) Image synthesis from the original images and (b) reconstructed
from the PCA subspace.

image column c of the virtual view V using IBR, we compute
0 = tan ( %) We obtain the index of the reference view

using (1). From the reference image A; we select the column
¢’ computed as

d = ftan(3) +co, “4)

where 3’ is the ray approximation we compute using (2).
The process is illustrated in Fig. 4 (a). To compensate for the
depth change, we vertically resample all columns according
to (3). We compute ¢ = tan TfTOS and ' = ftan(¢')+ro,
where r is the row index in the virtual view, and 7’ is the row
in the reference view A;.

In our approach, the images are not stored directly in an
image volume, but rather as a low dimensional representation
in a subspace computed using PCA. Because of a large
number of images in the image volume, a batch computation
of the PCA representation is often not possible. It is therefore
necessary to use an incremental approach to the compu-
tation of the principal components, namely an incremental
eigenspace approach as described in [4]. The eigenspace
is therefore built incrementally, by gradually inserting one
image after another during exploration. Furthermore, using
incremental algorithm results in an open-ended model, since
new images representing novel positions can always be added
to the representation, as shown in a slightly different context
in [4].

The incremental training using PCA produces a column
matrix of eigenimages U = [uy, ug, ..., ug] and, for each
reference view A;, represented as a column matrix a;, a
coefficient vector w; = [wy;, Wai, - .., wii] |, 1 € [L.n],
where n is a number of reference views, and k& < n, so that

k
a; ~ Z U;w; +a (%)
j=1

is an optimal reconstruction of the image a; from a k-
dimensional representation. a is the mean image vector.



PCA has the essential property that the reconstruction (5)
can be performed separately for each pixel [10]. This means
that we do not have to reconstruct the whole images but only
the columns that actually take part in the assembly of the
synthesized view. In practice, this means that we can compute

k
U(e,r) ~ Z WijU(er, r)j + af(c’,'r) . (6)
j=1

Fig. 4 (b) illustrates the image synthesis from the PCA
representation. We select the columns ¢’ in the eigenimages
U and map them into the columns ¢ in V. The value of ¢
also defines which coefficient vector w; to use for the image
part reconstruction according to (1).

C. Image matching

Once we generate the virtual views from the hypothetical
locations, we have to compare them to the actual query view.
As a similarity measure, we use the sum of the squared
differences (SSD) of the image data vectors.

In practice, some parts of at least one of the images
we compare are missing. When we move away from the
trajectory, we have no information at the top and bottom
rows of the image as not all the light rays are available
(see Fig. 3). Further, there might be cases when we detect
occlusions which would alter the similarity measure value.
We therefore mask out the regions with missing data and
hence not include them for the computation. However, we
need to compensate for the change in the data size with a
normalization factor.

Formally, we introduce a mask vector m with elements
m; = 1 if both elements z; and y; of some image vectors
x and y are present, and m; = 0 otherwise. Our modified
similarity measure between the two vectors is hence

N
dwa(X,y) = = Z (zj —y;)2. @)
2= (G e

d,.. makes it possible for us to compare the similarities of
pairs of images that have a different number of missing pixels.
The square-rooted value of (7) gives a weighted Euclidean
distance between the two vectors.

We have chosen this measure for its simplicity and fast
computation, and because it was sufficient for experimental
verification of our method. It would be straightforward to
replace it with a more complex or robust measure without
any modification of our framework.

III. EXPERIMENTAL RESULTS

So far we have provided the theoretical background of
our method. In this section, we perform an experimental
evaluation of the proposed approach.

Fig. 5. A view showing the layout of the artificial scene. The superimposed
grid represents the viewpoint locations, the highlighted cells showing the
reference viewpoints.

(a) (b)

Fig. 6. A sample image from (a) the real scene sequence close to the scene
and (b) away from the scene (b); (c) a synthesized view.

A. Input images

We tested the proposed methods on two image sequences.
Here we explain how we acquired them.

Artificial scene sequence. For the quantitative evaluation
purposes and in order to achieve a high level of control,
we captured an artificial scene from a set of viewpoints!.
The viewpoints were organized in a uniformly spaced grid of
81x40 locations with an interval of 10 cm and with all the
views pointed in the direction parallel to the shorter side of
the grid. Our spatio-temporal volume consisted of 81 images
from the row placed closest to the elements of the scene.

I'We used the Source engine copyrighted by Valve Corporation,
http://www.half-life.com/.



(b) () (d

Fig. 7. (a) One of the reference images from the artificial scene sequence;
(b) the reconstruction of the reference image from PCA; (c) a synthesized
view; (d) the actual view at the virtual point.

Fig. 5 shows a wide view of our scene along with the grid
of the image locations.

Real scene sequence. For the real environment tests we
selected a scene containing a decorated tree. This scene
contains a dense set of elements at different depths for the
viewpoints that are close to the scene (Fig. 6 (a). We acquired
images on several parallel paths, spaced at 50 mm. Each path
consisted of 62 viewpoints at an interval of 10 mm. The
last path was set 700 mm away from the first path. Fig. 6
(b) shows how the appearance changes substantially at this
distance.

We resampled all the images to the resolution of 640 x 480
pixels and calibrated the camera to obtain its focal length f
and principal point rg, co. We performed incremental PCA
on the volume images, and retained 20 eigenimages. This
compression corresponds to capturing approximately 80% of
the data variance in the case of the artificial scene and 84%
in the case of the real scene sequence.

B. Image synthesis

Given an image volume and the virtual viewpoint parame-
ters, our method produces an image representing the view at
the virtual viewpoint. Fig. 6 (c) shows an example of a virtual
view assembled from the Real scene sequence image volume.

Fig. 7 (a) shows a strip from a sample reference image, and
Fig. 7 (b) shows a reconstruction from the PCA representation
of the reference image set. We see that PCA visually alters
the images and introduces a small amount of spatial aliasing.
In general, we can afford a significant level of compression
for the recognition task. Figs. 7 (¢) and (d), show a virtual
view generated with our method, and the actual view (ground
truth) at that point, respectively.

C. Virtual image quality

We would like to evaluate the quality of the virtual images.
To do this, we compose virtual views from a PCA image
volume at a known set of parameters. The viewpoint set
presented here simulated the motion away from the scene. To
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Fig. 8. Comparison of the performance of different methods: (a) average
values depending on d; and (b) d,, = —350 cm.

provide a comparison to simpler, yet less powerful methods
for obtaining virtual viewpoints, we took the reference view
at the same offset = as the virtual viewpoint, and rescaled it
according to the virtual viewpoint parameters. Note that this
is only possible if the viewpoint parameter value = equals
that of one of the reference views.

Fig. 8 shows the results of the tests. The curve labeled
Scaled represents the method which takes the closest refer-
ence view and rescales it according to parameters d. and
d,. PCA Scaled scales the PCA reconstruction of the closest
reference view. PCAIBR represents the virtual view synthesis
as described in this paper. PCAIBR-1 uses the same method
as PCAIBR, except that we omit the reference view at x for
the image synthesis. Finally, IBR and IBR-1 represent image-
based rendering from original images.

We can see that the best results are achieved by synthe-
sizing the images from the PCA representation of the image
volume. This method outperforms the other approaches by
far and its advantage is particularly evident when the query
image is far from the training path, i.e., in viewpoints where
views are expected to differ significantly from the training
views.

As it can be seen from the chart, simple rescaling of the
image performs worst, followed by the IBR synthesis from
the original panoramic volume, and the rescaling of the image
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from the PCA representation of the panoramic volume. If we
omit some reference images, the results deteriorate only when
|d,| is smaller than the reference viewpoint resolution.

We can conclude that the proposed method efficiently
generates faithful novel views even between reference view-
points and at a significant distance from training positions.
This allows for efficient matching with the virtual viewpoint
hypotheses, providing a good basis for localization.

D. Image matching for localization

To estimate a location of a query view, we generate virtual
views at different viewpoints and select the most similar
virtual view to the query view. Therefore, the localization
becomes an optimization problem. The appearance of a virtual
view depends on parameters x, d, and d., two of which define
a viewpoint, while the third one is scene-dependent. Even
though we could estimate d. by using a range scanner or a
parallax matching of image features, we want to rely solely on
the techniques presented in this paper. Therefore, we assume
none of the parameters is known in advance, and we estimate
all three of them in each query viewpoint location.

For this experiment, we selected an image from the arti-
ficial scene sequence at * = 440 cm along the panorama
trajectory, and y = 160 cm in the perpendicular direction. We
generated virtual views in a larger area around this location,
thus simulating a thorough search for the minimum. We
obtained a 3-dimensional tensor of the image distances.

Fig. 9 depicts the minimal values of the image distances
along d. and d,.. From this chart we also see that the global
minimum is at x = 440 cm, which is a precise estimation.
Fig. 10 shows the image distance depending on the other two
parameters for the  where the global minimum occurs.

Fig. 11 shows the shape of the valley from Fig. 10
depending on d. and d,.. We see the function shows an erratic
behavior at the values of d. that are too small, resulting in
images of 10% their original size or less. For the rest of the
values, the curve is nicely shaped, with a global minimum
at d, = —160 cm, and d. at the distance to the tank wagon
in Fig. 5. This demonstrates that the optimization selects the
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Fig. 11. The minimal image distances depending on d;, (a) and de (b).

value for d. as the distance to the most dominant visible
object. The selection depends on the similarity measure, in
our case the larger object that is in the more contrast with the
rest of the scene, the more dominant it will be. In practice, we
might select a different d. for the visualisation purposes, but
the minimization could prefer a parameter which produces
more visual artifacts, but whose overall influence to the
matching is lower.

From this example we can see that the proposed method
generates views that are suitable for the minimization task
which results in a location estimation.

E. Localization

Finally, we evaluate the proposed method’s ability to per-
form the task of localization. The focus of the localization is
the estimation of parameter x. However, we are also interested
in the precision of estimation of parameter d,., which provides
the distance to the query view from the reference trajectory.
To perform the experiments, we used both the artificial scene
sequence and a real scene sequence. Here, we evaluate the
results in terms of the distance between the estimated location
and the actual location (i.e., ground truth).

In each sequence, we used only half a viewpoint resolution
for composing the reference image volume. The test set con-
sisted of all the images from each sequence. We considered
each reference image to be at a fully unknown location. To
get a location estimation, we used the proposed method to
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generate a set of hypotheses and selected the most similar
one to each query view.

To narrow down the search space, we computed a set of
up to 5 candidate values for x. We achieved this using the
proposed method on a query view, as it represents a single-
view image volume. In this case, only the % ratio influences
the resulting virtual view for simulating the forward/backward
motion. We matched each virtual view to the reference views
in the PCA volume [4]. The 5 closest matches in the volume
thus provided the candidate values of x.

Fig. 12 gives the results for estimating x in terms of
the relative localization error. The values are relative to the
average distance between the query views and their closest
reference view. Apart from the proposed method, the results
also show the performance of direct matching of the query
view to the reference views [4], and the best candidate for
x obtained as explained above. High errors obtained by the
direct matching demonstrate that the appearance changes con-
siderably when the viewpoints move away from the reference
viewpoints. Finding a virtual view obtained from the reference
view that matches best to the reference views can provide
good estimations of parameter x. The method, however is
liable to aliasing, while it also cannot predict any changes
in the occlusions. This lowers the overall performance of
the method as shown by the artificial scene results, requiring
additional estimates. Further, the location estimation is limited
to the resolution of the reference viewpoints (unless we use
an interpolation to increase the spatial distribution of the
match candidates). Our proposed method performs best, even
though, as shown by the real scene experiment, only slightly.

From these results it appears that the proposed method
has only a slight edge over the competitive methods used
in our experiments. However, only our method is capable
of estimating the distance from the trajectory to the query
viewpoint. In addition to estimating = as presented above,
we also obtained the estimate of d, for each test view. By
using a resolution of 50 mm for the virtual views (which was
also the resolution of the test images), the average localization
error for d,, was 16.9 mm.

IV. CONCLUSION

In this paper we proposed a method for mobile robot local-
ization using a panoramic image volume as the representation
which allows for generation of virtual views from arbitrary
viewpoints in the vicinity of training locations using image-
based rendering. By searching for the viewpoint with the
view that is most similar to the query view we can estimate
the momentary location of the robot. The major advantage
of our method is that we do not need any depth map or
correspondences on local features while still being able to
get precise estimates of the robot’s location. By using an
incremental PCA for a low-dimensional representation of
the image volume, we managed to create an open-ended
and compact representation, which enables fast reconstruction
of virtual views. We obtain fast synthesis largely due to
the inherent ability of the PCA representation to allow for
pixelwise reconstruction of images.

We have demonstrated the performance of our method first
on an artificial sequence and then on real data from a camera
on a mobile robot. Our experiments show that the range of
reliable localization is substantially larger when using IBR.
When acquiring the reference images on a linear trajectory,
we can reliably estimate novel viewpoint locations on a plane.

Our future work is focused on the merging of representa-
tions obtained on different paths. Further, we are exploring
a combined local and global representation. We also plan
experiments on navigation in large open environments.
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