
Semantic Attachments for Domain-Independent Planning Systems

Christian Dornhege and Patrick Eyerich and Thomas Keller
and Sebastian Trüg and Michael Brenner and Bernhard Nebel

University of Freiburg, Germany
Institut für Informatik

Georges-Köhler-Allee 52
79110 Freiburg, Germany

{dornhege, eyerich, tkeller, trueg, brenner, nebel}@informatik.uni-freiburg.de

Abstract

Solving real-world problems using symbolic planning often
requires a simplified formulation of the original problem,
since certain subproblems cannot be represented at all or only
in a way leading to inefficiency. For example, manipulation
planning may appear as a subproblem in a robotic planning
context or a packing problem can be part of a logistics task.
In this paper we propose an extension of PDDL for specifying
semantic attachments. This allows the evaluation of grounded
predicates as well as the change of fluents by externally spec-
ified functions. Furthermore, we describe a general schema
of integrating semantic attachments into a forward-chaining
planner and report on our experience of adding this extension
to the planners FF and Temporal Fast Downward. Finally, we
present some preliminary experiments using semantic attach-
ments.

Introduction

Real-world planning problems often require several sub-
problems to be solved. For example, in a robotic context
it is usually necessary to plan robot movements and the ma-
nipulation of objects. Furthermore, the high-level tasks the
robot is supposed to perform, e.g., fetching a book from the
library, must also be planned for. While the latter problem
can be addressed using traditional symbolic planning ap-
proaches, navigation and path planning is beyond the scope
of symbolic planners. In fact, specialized planners are avail-
able for these problems.

It makes, of course, a lot of sense to decompose a complex
real-world planning problem into different simpler subtasks.
However, the planners have to be combined in the right way.
The usual method here is a hierarchical combination. On
the highest level, the symbolic planner creates a symbolic
plan. Then the actions are refined using the low-level plan-
ners, e.g., the path planner and the manipulation planner.
The assumption here is that the symbolic description is on
an abstraction level that permits a successful execution of
any generated plan. However, very often this is not true. In
such cases, the early commitment of the symbolic planner
may lead to failures on the lower levels.

Instead of such a top-down approach, hierarchical compo-
sition can also be achieved in a bottom-up manner, where all

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

information possibly relevant to the symbolic planner is pre-
computed by the lower level reasoners. This, however, may
be very costly if there are too many such facts. For exam-
ple, the precomputation of all trajectories between all pairs
of poses of a gripper at possible locations for all possible
configurations of objects is too time and memory consum-
ing. Furthermore, most of the generated information will
turn out to be irrelevant to the task at hand.

Therefore, in this paper, we propose a third approach that
integrates high and low-level planning more tightly and in
which a low-level reasoner can provide information to the
high-level planner during the planning process, but is only
evoked if relevant to the high-level planner. Contrary to
the hierarchical decomposition and combination, a particu-
lar choice on the symbolic level can lead the low-level plan-
ner to detecting failure and requesting to backtrack immedi-
ately.

To integrate information about special-purpose reason-
ing into symbolic planning we propose to use what we call
semantic attachments1 to a planning domain description.
Some of the predicate symbols of the domain description
can have such a semantic attachment, meaning that the truth
values for corresponding atomic ground formulas are spec-
ified by an external mechanism. Similarly, there exist se-
mantic attachments for effects on numerical fluents which
are determined by an external mechanism as well.

Semantic attachments can easily be added to a planning
language like, in our case, PDDL. Based on that, we de-
scribe a general framework for integrating these extension
into forward-chaining state-space planners, which are par-
ticularly suited to our task since they search over complete
world states. External modules can then access those states
in order to compute conditions and effects for their special-
purpose behaviors.

While similar mechanisms have been used before, in par-
ticular in domain-specific contexts (Konolige and Nilsson
1980; Orkin 2006), our work appears to be the first that
extends PDDL rendering this feature available for domain-
independent planners.

The rest of the paper is structured as follows. In the next

1Semantic attachment is a term coined by Weyhrauch (1980) to
describe the attachment of an interpretation to a predicate symbol
using an external procedure.

section, we describe a number of motivating examples. Then
we specify an extension of PDDL and examine soundness
and completeness of a planner relative to semantic attach-
ments. Based on that, we describe our implementations of
semantic attachments in the planning systems FF and TFD.
Our experience with using semantic attachments from a per-
formance point of view is reported in the experimental sec-
tion. Finally, we comment on related work and close with a
conclusion and outlook.

Motivating Examples

For many real-world problems, it is hard to find an abstrac-
tion suitable for symbolic planning which guarantees that for
every symbolic plan an executable concretized plan will ex-
ist. In this paper, we consider two such problems, namely a
logistics domain with complex truck packing problems and
a robot manipulation domain with fairly realistic grasp mod-
eling.

Transport Domain

The logistics domain has been a standard benchmark for sev-
eral years at the International Planning Competition. It mod-
els a common logistics problem, where trucks deliver pack-
ages to different locations. In the original formulation, each
truck can pick up only one package. With the introduction
of numeric fluents, it became possible to model truck ca-
pacities and package sizes in the transport-numeric domain,
allowing trucks to load multiple packages.

Although more realistic than not representing capacities
at all, summing up volumes is obviously not sufficient for
checking whether a set of packages can be loaded into a
truck, since the package geometries are not considered. For
example, Figure 1 shows that it is impossible to pack two
equally sized cubes into a cube with double the volume.
Moreover, it demonstrates that the volume approximation is
not even close to reality.

Figure 1: The two smaller cubes have half the volume of
the outer one, but they obviously do not fit together into the
outer cube.

Clearly, it is beyond the capabilities of a symbolic planner
to solve the three-dimensional packing problem. However,
there exist specialized algorithms for solving this NP-hard
problem exactly or approximately. Such a reasoner could be
integrated into the planner by attaching it semantically to the
precondition of an action.

Robot Manipulation Domain

Similar to the logistics domain, the blocks-world domain has
been a benchmark in the planning area for a long time. It is
a highly abstract version of a robot manipulation problem.
Nowadays such large tasks are easily solved by symbolic
planners. Unfortunately, however, the domain is so abstract
that it has hardly anything to do with reality. For example,
gripper poses or potential collisions of the gripper with other
objects do not play a role at all.

A slightly more concrete domain is depicted in Figure 2.
Here we have a box which is open at the top, a shelf, a table,
and a little moveable box. The gripper is simply a stick that
can connect to moveable objects from any direction. Thus,
depending on the continuous grasp direction, collisions can
occur. In general, we want to manipulate objects, i.e., grasp
them, transport them, and put them down. In particular, we
want to plan for the situation that we have to grasp an object
that is in the box and to place it in the shelf. This would
require us to place the object on the table in order to grasp
it from the side to avoid a collision of the gripper with the
shelf when putting down the moveable object.

(a) (b)

Figure 2: Visualization of the manipulation domain with (a)
an initial state and (b) a final state.

Again, solving such a task using only a symbolic planner
is clearly impossible. Here we need a manipulation planner
as a sub-component of the symbolic planner. Such an em-
bedded planner could check the preconditions of whether a
grasp or place action is possible. Furthermore, it also needs
to change the internal model of the environment so that fu-
ture possible collisions can be detected.

Semantic Attachments
Semantic attachments are external procedural reasoning
modules (in the following just called modules) that may
compute the valuations of state variables at planner run-time.
The symbolic planner itself is mostly unaffected by this ex-
tension: instead of looking up values in a table or updat-
ing them through state transitions as usual in Strips-like lan-
guages, a function call provides the necessary information.
Under the hood of the module, though, complex computa-
tions can be performed that transcend the capabilities of the
planner.

In order to integrate semantic attachments into a planner
we propose the architecture shown in Figure 3. Semantic at-
tachments consist of a declarative part that describes their
use in the planning domain, i.e., their symbolic use in pre-
conditions and effects of planning operators. Additionally,
they have a procedural part which is the actual algorithm
for computing the value of a state variable. This part is di-
rectly included into the planner as a shared library and may

Figure 3: Extending planning tasks by modules to planning
tasks with semantic attachments

access the planning state through callback functions. The
next section gives more details about the implementation.

We propose two kinds of semantic attachments that can be
part of operators: Condition checker modules test whether
some complex operator precondition is satisfied. Effect ap-
plicator modules compute changes to any number of state
variables. When speaking of the declarative part of these
modules, i.e., their use as preconditions and effects of plan-
ning operators, we will speak of module conditions in the
case of condition checker modules and module effects in the
case of effect applicator modules.

PDDL/M In order to actually use semantic attachments in
classical planning, it is necessary to extend the description
language for planning tasks.

Therefore, we propose the introduction of semantic at-
tachments to the PDDL-standard leading to PDDL/M, which
is described in the following. External modules seem to be
most relevant when complex numeric computations need to
be performed during the planning process. Therefore we
based our extension on the PDDL 2.1 version of the lan-
guage that introduced numeric fluents (Fox and Long 2003).
We call the extended language PDDL/M and add a new
PDDL requirement :modules to indicate that a planning
domain uses semantic attachments.

A PDDL/M domain may contain an additional section
that declares the modules similar to the way predicates are
declared in PDDL. In this section, each semantic attachment
has its own entry, a condition-checker module consisting of
three, and an effect-applicator module of four mandatory
parts: Both start with a unique identifier to reference the
module including a possibly empty list of parameters, sim-
ilar to a function or predicate entry in their respective sec-
tions. Only for effect-applicator modules we then list any
number of numerical fluents that are set by the module. Both
cases then declare the type of module and finally the func-
tion and library name where the module can be found by the
planning system.

For example, the condition-checker module used in the
transport-modules domain is declared as follows:

(:modules

(canLoad ?v - vehicle ?p - package

conditionchecker canLoad@libTrans.so))

The module is called canLoad, it decides whether it is
possible for vehicle ?v to load package ?p, and can be found

in the shared library libTrans.so by calling the function
canLoad.

The syntax of effect-applicator modules is similar, as can
be seen in the following from our robot manipulation do-
main:

(:modules

(putDown ?o - movable ?p - base ?g - grasp

(q0) (q1) (q2) (q3) (q4) (q5) (q6)

(x ?o) (y ?o) (z ?o)

(yaw ?o) (pitch ?o) (roll ?o)

effect putDown@libTrajectory.so))

This module sets the robot arm configuration (q0 − q6) and
the position and orientation of object ?o after putting it down
at ?p using grasp ?g. The information is made available to
the symbolic planner via the numeric fluents that are listed
between the parameters and the module type.

To use a module in an operator, it has to be specified in
the same way as predicates or functions. The only differ-
ence is that a module is given by enclosing its identifier and
parameters in square brackets.

(:action put-down

:params (?o - movable ?p - base ?g - grasp)

:condition (... ([checkPutDown ?o ?p ?g]))

:effect (and (on ?o ?p) (handempty)

(not (holding ?o ?g)) ([putDown ?o ?p ?g])

Soundness and completeness One important question
when using such semantic attachments is how these affect
soundness and completeness of the planner. Since arbitrary
code can be used in the modules, it cannot be guaranteed that
the planner terminates when calling a condition-checker or
effect-applicator. However, under some reasonable assump-
tions some form of soundness and completeness can still be
guaranteed.

In particular, we require condition-checkers to always ter-
minate and return a truth-value. Furthermore, this truth-
value should be identical for identical parameter values and
world states. In other words, condition checkers are nothing
else than a concise representation of derived predicates.

In a similar vain, we require that effect-applicators always
terminate and result, for identical parameters and states, in
identical settings of the fluents they act on. In particular, ef-
fect applicators should not contain any mechanism for mak-
ing choices between different outcomes, such as selecting a
location for placing an object. This means that we can view
effect applicators as a concise representation of a part of the
deterministic transition function that is usually completely
specified by the PDDL operators.

If these two conditions are met, one can analyze sound-
ness and completeness of a planner extended by a semantic
attachment mechanism relative to the semantic attachments
used in the problem description: Assuming that the condi-
tion checkers implement the intended meaning and assum-
ing that the effect applicators implement the intended mean-
ing of the state transitions, are the returned plans correct and
will the planner find a solution if there exists one? As we
will argue below, the implementation of semantic attach-
ments in the planners we considered guarantees this form
of conditional soundness and completeness.

Implementation

A PDDL/M planner must evaluate semantic attachments at
runtime, i.e., it must call the external modules and use the
computed results in its planning process. The modules, on
the other hand, need to access relevant parts of the planning
state for their computation.

Technically, modules are implemented as dynamically
loaded shared libraries. To be able to successfully load ar-
bitrary modules, the planner and the modules need to use a
common interface. In Figure 4 we present the main part of
the C++-Interface used by the planner in order to support se-
mantic attachments. Similar interfaces can be designed for
other programming languages.

Besides some data types the interface defines two func-
tion types for the two kinds of semantic attachments im-
plemented. Both function types require a ParameterList
holding the operator’s grounded parameters and two call-
back functions giving the module the ability to access the
current planning state. There are two types of callbacks, one
for logic predicates and one for numeric fluents. Addition-
ally, both condition-checker and effect-applicator module
calls can be invoked with or without a heuristic flag, thereby
either requesting either an exact result or an approximation.
Effect-applicator modules are also passed a reference to a
list of numeric values which it is supposed to affect as a re-
sult of its computations.

The planning system is responsible for calling those func-
tions with the correct parameters and at the correct time,
namely during successor generation and possibly during
heuristic state evaluation.

This section aims to show how this can be achieved for
standard progression search planners. We present the exten-
sion of two planners: FF, a classical planner and Tempo-
ral Fast Downward, a numeric temporal planner based on a
multi-valued state variable representation.

FF/M

FF (Hoffmann and Nebel 2001) is a planning system based
on forward state space search, using a heuristic that works
with a relaxed version of the planning problem to provide
fast estimates for goal distances. A state in FF’s search space
is basically a valuation of state variables.

The relaxed planning task differs from the original task in
that it ignores the delete lists of all actions. The most impor-
tant feature of this relaxed planning task is its monotonicity:
due to the absence of negative symbolical effects, any con-
dition which is true in state S is also true in every superstate
S′ (S ⊆ S′). This results in a polynomial runtime of the
GRAPHPLAN (Blum and Furst 1995) algorithm which FF
uses to solve the relaxed planning task.

FF/M is an extension of FF supporting semantic attach-
ments. A condition c of an action with a semantic attach-
ment is satisfied in a state S iff all logical conditions are ful-
filled and all condition modules referred to in c return true.
Analogously, the application of an action with semantic at-
tachments generates a new state by first applying all logical
effects and then calling all external modules.

TFD/M

Temporal Fast Downward (TFD) (Eyerich, Mattmüller, and
Röger 2009) is a domain-independent progression search
planner built on top of the classical planning system Fast
Downward (Helmert 2006). It extends the original system
supporting durative actions as well as numeric and object
fluents. One distinguishing feature of both systems is that
the input consisting of propositional atoms is automatically
translated into an encoding using multi-valued variables.
This allows for a more concise internal state representation
and enables the use of heuristics employing hierarchical de-
pendencies between state variables, altogether resulting in a
more efficient search performance.

(Temporal) Fast Downward solves a planning task in three
phases: As a first step, the PDDL planning task is translated
from its Strips-like encoding into a representation similar
to SAS+ (Bäckström and Nebel 1995), using finite-domain
variables instead of binary predicates. Afterwards, in a
knowledge compilation step, some data structures utilized
by the heuristic and the search component are generated.
The most important of these are domain transition graphs
for each variable that encode how state variables can change
their values, and the causal graph that represents the hier-
archical dependencies between different state variables. Fi-
nally, a best-first progression search, guided by a numeric
temporal variant of the context-enhanced additive heuristic
(Helmert and Geffner 2008), is performed.

TFD/M is an extension of TFD supporting semantic at-
tachments. Since (in contrast to FF) the internal representa-
tion of TFD is significantly different from PDDL, enabling
both the planner and the “modules” to access and manipulate
the planning states is not trivial. The most significant ex-
tensions to TFD occur in the translation and search phases,
which we will describe in the following.

Translation In the translation phase of Temporal Fast
Downward, the task is converted into a finite-domain rep-
resentation (FDR). In order to generate an appropriate FDR
description from PDDL/M tasks, we adapt the method of
Helmert (Helmert 2009). Roughly, this process consists of
the following phases: The generation of mutual exclusion
(mutex) invariants that describe which propositions may
never be true at the same time; a grounding phase in which,
by means of a relaxed reachability analysis, a set of proposi-
tions (instantiations of predicates) is generated that may po-
tentially be used in the planning process; the generation of
a suitable FDR based on the mutex invariants and reachable
propositions.

Since module conditions are “black boxes” to the planner,
during invariant generation we cannot make any assump-
tions about their falling into mutex groups, i.e., for each
grounded module condition we introduce a distinct FDR
variable that must evaluate to true in every condition where
the original module condition occurred.

Module effects are “black boxes” for the planner, too;
however, they cannot be ignored, since they may affect flu-
ents that are not influenced by any non-module effects. Us-
ing the standard grounding procedure, these fluents would
erroneously be compiled away as unreachable. To prevent

typedef int (*conditionCheckerType)(ParameterList & parameterList,

predicateCallbackType predicateCallback, numericFluentCallbackType numericFluentCallback,

bool heuristic);

typedef int (*effectApplicatorType)(ParameterList & parameterList,

predicateCallbackType predicateCallback, numericFluentCallbackType numericFluentCallback,

vector<double>& writtenVars, bool heuristic);

typedef bool (*predicateCallbackType)(PredicateList* &predicateList);

typedef bool (*numericFluentCallbackType)(NumericFluentList* &numericFluentList);

Figure 4: Main part of the PDDL/M C++-Interface. The two types of semantic attachments are represented by two types of
functions: conditionCheckerType and effectApplicatorType. Additionally two types of callback functions are defined: One for
logic predicates and one for numeric fluents.

this, the relaxed reachability analysis of TFD/M adds all nu-
meric fluents affected by a module effect whenever the cor-
responding ground action is detected as reachable.

Since semantic attachments reason about PDDL, i.e., a
propositional representation rather than an FDR, some care
must be taken when information is shared between the
planner and the semantic attachments, i.e., when using the
PDDL/M interface as shown in Figure 4. Firstly, mappings
between module conditions and the newly introduced corre-
sponding FDR variables must be stored, so that the search al-
gorithm can call the module when evaluating the truth value
of a variable. Secondly, we also need to keep a mapping
between the FDR and the original PDDL task so that, upon
entering a callback from a module, the planner can look up
the internal FDR correspondent to the PDDL fluents used by
the module.

Search Temporal Fast Downward performs heuristic
search in the space of so-called time-stamped states. The
most essential information encoded in a time-stamped state
S is a real-valued time-stamp, a valuation of all state vari-
ables, and the set of operators already started but not finished
yet. The successors of such a state are those time-stamped
states that can be obtained by either starting a new applicable
action at the current time point or by computing the tempo-
ral progression of the current state. A solution is found as
soon as a time stamped state is reached that satisfies the goal
and that contains no more scheduled conditions or effects.

In order to handle external modules during search, we ex-
tended TFD to support the interface sketched in Figure 4.
Compared to the implementation in FF the callback func-
tions are less straightforward in a planner that internally
uses multi-valued variables. The interface to modules was
designed to be independent of planner-specific representa-
tions and therefore expects the predicates from the original
PDDL/M domain. Therefore, predicate names need to be
converted to multi-valued variables at runtime using the ta-
ble allocated in the translation.

An additional problem in TFD is that module conditions
can occur as scheduled conditions, which means that they
have to be checked much more often: A scheduled module
condition has to be checked whenever a time progression
is performed or when its time-stamped state is checked for
consistency. To minimize computation our implementation

does not check module conditions before all other logical
and comparison conditions have been shown to be satisfied
first.

Soundness and Completeness It is fairly obvious that se-
mantic attachments, as implemented in FF/M and TFD/M,
do not affect soundness and completeness of the planning
algorithms under the assumption that the external modules
satisfy the requirements specified previously, i.e., assum-
ing that they terminate and deterministically compute val-
ues that are regarded as “correct”. Soundness cannot be af-
fected, since module effects virtually define how a correct
state transition looks like in the presence of semantic attach-
ments, whereas module conditions only restrict the options
of the planner, but do not alter them. Conversely, complete-
ness can not be affected, since module conditions may only
rule out possible transitions that are considered “incorrect”
by the condition checker, i.e., that evaluate to false. Since for
module effects we assume that choices are uniquely deter-
mined by the current planning state, we cannot lose possible
plans through “unfortunate” effect selection in the module.

Integration in Heuristics

As depicted in the interface shown in Figure 4, condition-
checker and effect-applicator functions accept a Boolean
parameter heuristic. When a module is called with
heuristic set to true it should aim at very fast compu-
tations, possibly at the expense of accuracy. The idea is that
the symbolic planner can decide to call this approximate ver-
sion of the module during heuristic computations.

FF/M integrates module calls into its heuristic by treating
module conditions like symbolic facts in the relaxed plan-
ning task. The idea is that in the relaxed planning task a
module condition is met on all levels of the plan graph that
follow the layer in which the condition was met for the first
time. When extracting the solution plan from the plan graph
FF/M selects achieving actions for each fact in the current
fact layer. After applying an action in the creation of the plan
graph each module condition which is still false is tested
again and if it became true the action is saved as the condi-
tion’s activating action to be used in the plan extraction.

Interestingly, if a necessary condition of the module con-
dition can be expressed in PDDL, one can avoid to call mod-
ules during heuristic computations at all. E.g., in the trans-

TFD TFD/M % # TFD TFD/M %

01 0.01 0.01 0 16 0.61 0.78 28
02 0.01 0.02 100 17 0.73 0.96 32
03 0.01 0.02 100 18 0.85 1.10 29
04 0.04 0.05 25 19 1.89 2.38 26
05 0.08 0.10 25 20 3.19 4.06 27
06 0.14 0.18 29 21 2.47 3.12 26
07 0.16 0.24 50 22 0.16 0.19 19
08 0.18 0.24 33 23 0.12 0.14 17
09 0.29 0.37 28 24 0.20 0.26 30
10 0.59 0.75 27 25 —- —- —-
11 0.47 0.61 30 26 1.50 1.89 26
12 0.58 0.76 31 27 —- —- —-
13 0.05 0.08 60 28 3.82 4.71 23
14 0.08 0.12 50 29 5.74 7.21 26
15 0.06 0.07 17 30 5.55 6.89 24

Table 1: Results of Experiment I (runtimes in seconds).

port domain introduced above, the condition that the pack-
age fits into the truck solely based on its volume is express-
ible in PDDL and is also a necessary condition for the mod-
ule condition. Since the value returned by this condition
should suffice as a heuristic estimate, we can safely ignore
the module condition in the heuristic state evaluation. As
a side effect a lot of module calls are saved during search:
Whenever a necessary PDDL condition is not satisfied, the
module cannot be satisfied either.

Empirical Data

In this section we present three experiments. Experiment I is
an adaptation of a standard benchmark domain that does not
add any new features, but provides insight on the runtime
solely caused by module calls itself. Experiment II shows
a new variant of the logistics domain that respects the ge-
ometry of packages when determining if a package can be
loaded. In experiment III a geometric manipulation planning
domain is generated in which a semantic attachment checks
for possible grasping poses. While in the first two experi-
ments TFD/M is used, in Experiment III we use FF/M.

All experiments have been run on standard desktop com-
puters, the first two on an Intel Dual Core 6400 CPU with
2100 MHz and the third on an AMD Athlon XP 2000+ CPU
with 1667 MHz, both with 1 GB of RAM.

Experiment I

The first experiment is designed to show the overhead intro-
duced by the module calls alone. As an example we chose
the crew-planning domain of IPC 2008. The reason is, that
it contains numerous different operators, that all have one
predicate in common, namely the predicate available, show-
ing if a crew member is available for executing a task.

We wrote a module that resembles this predicate by ex-
ecuting a callback to the symbolic planner, requesting the
truth value of the available predicate in the current state and
returning it. Essentially the module does not do anything
different, and does not perform any extra calculations.

Figure 5: Recursive packing of rectangular objects: Once
a package has been placed in a corner, three new rectangu-
lar containers emerge from the remaining space into which
the remaining packages are recursively packed in the same
manner.

In our experiment we ran TFD/M on the original version
of the domain, and then compared runtimes with the mod-
ified version that adds a module call. Table 1 shows the
planning time until the first plan was found (for a timeout
of 30 minutes and a memory limit of 1 GB). As expected,
the runtime for the module version of the domain is higher.
It should be noted that the module calls do not influence
the planning process itself as the same states are expanded,
so results are comparable. Most importantly, it can be seen
that the relative overhead is independent of the problem size,
thus scaling properties of the planner are not influenced.

To judge the introduced overhead, it should be noted that
in usual problems it is not the module call itself that takes a
majority of the runtime, but the module’s calculations. The
increase in runtime is as anticipated, as we replaced a pred-
icate check, that is usually implemented as an integer com-
parison, by a function call, that in turn creates a callback
to the requested predicate. This clearly needs to introduce
some overhead. Additionally, we chose a harsh domain for
this experiment as the crew planning domain calls this mod-
ule in almost every operator.

Experiment II

The second experiment presents a full implementation of a
PDDL/M task that uses non-trivial semantic attachments.
We follow the transport example proposed in the motiva-
tion section. Our custom domain models a classic logistics
task where trucks are allowed to carry multiple packages
with one crucial adaptation: One part of the pick-up oper-
ator’s precondition is a semantic attachment implemented as
a condition-checker module. The module canLoad is a pack-
ing algorithm that we shortly describe. The algorithm needs
to solve the three dimensional bin-packing problem which,
even for one bin, is already NP-hard (Martello, Pisinger,
and Vigo 2000). As our main focus is implementing a cor-
rect, but not necessarily optimal solution, we therefore use a
heuristic packing algorithm.

Our implementation follows a recursive approach of pack-
ing a set of rectangular packages into one rectangular con-
tainer. First, the largest package that fits the container is
placed in a corner. Second, the remaining space is parti-
tioned into three new rectangular containers as shown in
Figure 5. Third, the set of remaining packages is recur-
sively packed into the remaining containers, starting with

Trucks Packs Nodes Runtime

01 2 2 5 0.01
02 2 4 10 0.36
03 3 6 15 0.81
04 3 8 20 1.70
05 3 10 25 33.86
06 4 12 30 27.47
07 4 14 35 146.62
08 4 18 45 244.45

Table 2: Results of Experiment II (runtime in seconds).

(a) (b) (c)

Figure 6: Visualization of the grasp poses calculated by the
external module during planning.

the smallest. If no unpacked packages remain, a packaging
has been found and the module returns true. To make the
planning algorithm complete, the exact method for three di-
mensional bin-packing (Martello, Pisinger, and Vigo 2000)
could be used. In that case our or any other simplified solu-
tion is an obvious choice as a semantic heuristic.

The implemented attachment combined with the adapted
transport-modules PDDL/M domain was run on examples
based on the transport-numeric domain of the International
Planning Competition 2008. Results are shown in Table 2
(as in the first example, a timeout of 30 minutes and a mem-
ory limit of 1 GB was set) and indicate the time in seconds
until a valid plan was found.

Experiment III

The planning domain for our third experiment mirrors one of
the real-world applications that we are investigating, plan-
based robot manipulation. For this experiment, we cre-
ated a geometric manipulation planning domain, focusing
mainly on handling different grasp poses. Each pose is de-
fined as a tuple p = (rotx(p), roty(p), rotz(p)), where for
i ∈ (x, y, z), roti(p) ∈ [0, 2Π] is the rotation of the robot
gripper around the i axis. The module was implemented to
check all possible grasping poses with a step-size of 0.1◦ in
each rotation axis, leading to very accurate results.

The task consists of multiple cubes that have to be moved
out of boxes onto a single shelf. Additionally, tables serve as
temporary placement possibilities where grasp poses could
be changed if necessary. To provide a means of comparison,
we tested this domain setup with different numbers of cubes,
boxes, and tables. Figure 6 shows a visualization of the us-
able grasp poses calculated by the external module during
the planning process.

This experiment was run with the FF/M planning system.
Results are shown in Table 3; runtimes are given in seconds.

Cubes Boxes Tables Runtime

01 1 1 1 0.20
02 4 1 1 1.20
03 8 1 1 5.00
04 12 1 1 12.80

05 1 4 4 0.58
06 1 8 8 1.06
07 1 50 50 6.27

08 4 4 1 5.30
09 6 6 1 36.55
10 12 12 1 1444.90

Table 3: Results of Experiment III (runtime in seconds). The
number of cubes, boxes, and tables gives an indication of the
growing complexity of the problems.

To give a feeling for the differences between tasks the table
also shows the numbers of cubes, boxes and tables avail-
able in each task. The results show that FF/M is capable
of solving middle-sized problems in reasonable time, espe-
cially considering the rather small step size we chose for
each rotation axis. Given that the algorithm implemented
in the external module is far from optimal, this result is
very promising and shows that it is reasonable to consider
solving real-world applications using a symbolic, domain-
independent planner with semantic attachments.

Related Work

In contrast to other planning systems that exploit domain
knowledge, such as SHOP2 (Nau et al. 2003), TLPlan
(Bacchus and Kabanza 2000), or TALplanner (Kvarnström
and Doherty 2000), semantic attachments do not guide the
search process, but provide a more precise domain seman-
tics.

In the past, semantic attachments have already been used
in some domain-specific planning systems for computing
specific action preconditions (Konolige and Nilsson 1980;
Orkin 2006). In this work, we have generalized this idea
to domain-independent planning and have specified a suit-
able PDDL dialect. Moreover, we extend previous work by
describing the use of semantic attachments for computing
action effects.

Semantic attachments enable “outsourcing” of hard
problem-specific computations during planning. In that re-
spect, our goals resemble the ones of Fox and Long (2001),
who tried to isolate optimization problems from planning
problems. The work by Srivastava and Kambhampati (1999)
on decomposing a general planning problem into a resource
and a planning problem is also relevant here. However, they
specifically investigate the relation between resource and
planning problems while we propose a general framework
for combining different kinds of planning.

In the area of robotic planning, the work that comes clos-
est to our intentions is a paper by Cambon et al (2004). They
also work on the integration of manipulation and symbolic
planning. However, they did not try to identify a general
interface between symbolic planning and domain planning,

but presented a specialized combination of a symbolic and a
manipulation planner.

The mechanism we propose is similar to an undocu-
mented feature of TLPlan (Bacchus and Kabanza 2000).
This planner also permits semantic attachments to predicate
symbols (Botea, Müller, and Schaeffer 2003). The main
differences to our approach are that TLPlan uses domain-
dependent search control, that the planning state cannot be
queried via call-back functions, and that it is not possible to
specify externally computed effects.

Conclusion

Planning occurs in many real-world problems. However, ap-
plying AI Planning techniques to solve them is often diffi-
cult, mainly because the planning problem cannot be iso-
lated from other reasoning tasks which the planner is not
designed to solve. Some aspects of the dynamics of an ap-
plication domain may be hard or even impossible to describe
declaratively, but must instead be computed when needed.

This is perhaps most notable in robotics applications
where causal, symbolic reasoning must be tightly entwined
with numeric computations, and where both may directly
influence each other. We believe that the impossibility to in-
terface non-symbolic reasoners (manipulation planners, path
planners) during the planning process in most current plan-
ners has been a major hindrance for their use in robotics.

In this paper, we have presented an approach to integrat-
ing external reasoning mechanisms, so-called semantic at-
tachments, directly into a planner. We have specified a suit-
able extension of PDDL to model them, and have described
criteria under which soundness and completeness of plan-
ners are maintained when they are extended with semantic
attachments. This allows domain designers to use domain-
independent planners, and extend them with domain-specific
sub-solvers where necessary. These “modules” can influ-
ence the course of the planning process directly by provid-
ing the planner with better information about action applica-
bility and effects, thereby reducing future execution failures
and the need for replanning.

In future work, we will focus on the impact of module
relaxations on the efficiency and accuracy of heuristics. Ad-
ditionally, we will remove an important (and somewhat ar-
bitrary) restriction from PDDL/M and our implementations:
In general, there may be many options for how to achieve a
module effect. E.g., a manipulation planner may find sev-
eral poses from which it could grasp an object. Currently,
we only permit modules that return exactly one result. In
future work, we will enable the planner to branch over an
initially unknown, yet finite number of outcomes online.

Acknowledgements

This research was partially supported by DFG as part of
the collaborative research center SFB/TR-8 Spatial Cogni-
tion Project R7, the German Federal Ministry of Education
and Research (BMBF) under grant no. 01IME01-ALU (DE-
SIRE) and by the EU as part of the Integrated Project CogX
(FP7-ICT-2xo15181-CogX).

References

Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artif.
Intell. 116(1–2):123–191.

Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Comput. Intell. 11:625–655.

Blum, A., and Furst, M. 1995. Fast planning through plan-
ning graph analysis. In Proc. IJCAI, 1636–1642.

Botea, A.; Müller, M.; and Schaeffer, J. 2003. Using ab-
straction for planning in sokoban. In Proc. Computers and
Games, 360–375.

Cambon, S.; Gravot, F.; and Alami, R. 2004. A robot task
planer that merges symbolic and geometric reasoning. In
Proc. ECAI, 895–899. IOS Press.

Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the context-enhanced additive heuristic for temporal and
numeric planning. In Proc. ICAPS.

Fox, M., and Long, D. 2001. Identifying and managing
combinatorial optimisation subproblems in planning. In
Proc. IJCAI, 445–452.

Fox, M., and Long, D. 2003. PDDL 2.1: an extension
to PDDL for expressing temporal planning domains. JAIR
20:61–124.

Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In Proc. ICAPS, 140–147.

Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.

Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artif. Intell. 173:503–535.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.

Konolige, K., and Nilsson, N. J. 1980. Multiple-agent
planning systems. In AAAI, 138–142.

Kvarnström, J., and Doherty, P. 2000. TALplanner: A
temporal logic based forward chaining planner. Ann. Math.
Artif. Intell. 30(1-4):119–169.

Martello, S.; Pisinger, D.; and Vigo, D. 2000. The three-
dimensional bin packing problem. Oper. Res. 48:256–267.

Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wau, D.; and Yaman, F. 2003. Shop2: An HTN
planning system. JAIR 20:379–404.

Orkin, J. 2006. Three states and a plan: The A.I. of
F.E.A.R. In Proc. Game Developers Conference.

Srivastava, B., and Kambhampati, S. 1999. Scaling up
planning by teasing out resource scheduling. In Proc. ECP,
172–186.

Weyhrauch, R. W. 1980. Prolegomena to a theory of mech-
anized formal reasoning. Artif. Intell. 13(1-2):133–170.

