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Abstract—Vision is an increasingly important sensor modality for mobile robots. Visual SLAM 
(simultaneous localization and mapping) has been used successfully for indoor and outdoor scenarios, 
where the focus typically lies in localizing the robot and the environment only serves to provide sparse 
landmarks for a large scale map. Structure from motion (SFM) techniques put emphasis on the actual 
fine-grained 3D structure of the environment, resulting in a denser more detailed map. For our mobile 
robot scenario we are interested in detecting objects in such a map. To this end we build on a state-of-
the-art SFM technique and use it to build a series of maps, which we stitch together after correcting 
for scale and finally use the combined map to detect flat surfaces and objects resting on those surfaces. 
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3D spatial clustering. 

 



I. INTRODUCTION 

Starting with pioneering work [1] in the 
1990s, SLAM (Simultaneous localization and 
mapping) in robotics community and SFM 
(structure from motion) in computer vision 
community have both made impressive 
progress during the last two decades. Although 
these two technologies originally came from 
different scientific communities, the current 
trend of using monocular cameras as sensors 
makes them more and more similar. SLAM has 
been widely applied for mobile robots and 
autonomous vehicles in outdoor and indoor 
environments. In these scenarios the focus lies 
on robot localization and real-time capabilities 
and hence only a sparse set of easily 
distinguishable landmarks is used to build the 
maps; an accurate three-dimensional 
representation of the scene usually is not 
necessary or feasible. SFM on the other hand 
focuses on detailed scene reconstruction rather 
than observer motion. Classical SFM typically 
works offline in batch mode and uses 
computationally expensive techniques such as 
bundle adjustment. But ongoing improvements 
of computer hardware make it possible to start 
focusing on full three-dimensional scene 
reconstruction in real time. So the boundaries 
between SLAM and SFM start to blur. 
We aim to build a system that allows a mobile 
robot to detect and eventually grasp generic 3D 
objects. We make the simplifying assumption 
that objects of interest rest on flat horizontal 
surfaces. This makes the otherwise very 
difficult task of segmenting arbitrarily shaped 
objects from the background tractable.  We 
build upon a state-of-the-art SFM technique [4] 
and extend it to fit our particular needs. We 
build a series of fine-grained maps and stitch 
these together to form a combined map. As the 
scale of maps generated from SFM is undefined 
(moving a camera over a model landscape is 
indistinguishable from flying over a real 
landscape) we have to correct for the arbitrary 
scale of the partial maps. We then use the 
combined map to robustly detect the dominant 
horizontal plane and finally segment the objects 
resting on that plane. 
The SFM technique we employ relies on 
tracking corner points in the images. Points 
matching over several images are used to build 
a 3D map and simultaneously estimate the 

camera motion. To provide at least a rough 
estimation of scale an initial map is built from 
two initial images using the 5-point stereo 
algorithm, where the motion between these 
images is assumed to be large enough (say 10 
cm) and known approximately from an external 
source such as the robots odomotry. Successive 
camera motion is estimated per image using 
map points projected into the image and their 
matching detected corner points. At the same 
time the map is extended as new corner features 
enter the field of view. Some well-known 
problems arising in this context are: 

• Difficult initialization Simultaneous 
estimation of camera pose from map points 
and building of the map from camera 
motion leads to a typical chicken-and-egg 
problem. 

• Expensive computation The whole 
estimation process gets increasingly 
expensive as the map grows.  

• Enormous redundancy All the captured 
landmarks usually are recorded and stored 
without efficient suppression of outliers. 

The SFM method we employ handles these 
well for small AR workspaces. To adapt the 
system to our mobile manipulation scenarios 
we slightly extend it and then use the results to 
detect tables and objects resting on them. 

II. RELATED WORK 
3D scene reconstruction from vision data has 

a long tradition in computer vision. Binocular 
stereo is among the most widely used 
techniques. Two (or sometimes also three or 
even more) cameras with a fixed, known 
relative position allow 3D triangulation of 
points matched in both images, where the 
known epipolar geometry is used constrain the 
search for matching points. A long base-line 
between the cameras will lead to a more 
accurate 3D reconstruction but at the same time 
makes the matching of image points more 
difficult and computationally expensive. Some 
approaches use active sensors such as structured 
light or line lasers. These methods however 
suffer from susceptibility to strong external 
light sources and limited range. Using a moving 
monocular camera allows simple matching of 
image features as the base-line between 
consecutive pairs of images is small but offers 
an infinitely large base-line over the whole 
sequence of images and thus high accuracy. 



Visual SLAM and SFM are two closely related 
techniques of that category. 

SLAM refers to a technology usually used 
by mobile robots and autonomous vehicles to 
build up a map within an unknown environment 
while at the same time keeping track of their 
current position. To our knowledge, EKF-
SLAM [1, 2] and FAST-SLAM [5, 6] are 
current state-of-the-art recursive approaches. 
Both of them use range sensors such as 
ultrasonic sensors or time-of-flight laser sensors 
and build a 2D (“bird's eye view”) map. 
Extended Kalman Filters (EKF) were the first 
recursive estimators for estimating map 
structure and observer position over time. 
Montemerlo et al. [5, 6] substituted the EKF 
with a particle filter to increase robustness in 
ambiguous situations and scalability to large 
environments by taking advantage of the fact 
that landmarks become probabilistically 
independent of each other given a known 
observer position. This greatly reduces the 
dimensionality of the estimation problem and 
allows a larger number of landmarks. 

More recently also cameras are used for 
SLAM. Davisons [3] "MonoSLAM" system 
shows the feasibility of real-time visual SLAM 
with a single camera. A FAST-SLAM based 
approach has also been successfully applied 
using of a single camera by E. Eade and T. 
Drummond [7]. 

Klein and Murray [4] present a novel 
method to estimate the camera pose and scene 
structure in an unknown environment, which is 
called Parallel Tracking and Mapping (PTAM). 
Tracking and mapping are separated into two 
threads, running in parallel on a dual-core 
computer. A brief subjective comparison of 
PTAM and MonoSLAM in [4, 8] demonstrates 
that PTAM has a better performance especially 
for larger maps. 

The next section outlines the PTAM system 
of [4] on which our work is built. Subsequent 
sections describe in detail our extensions, 
present results, limitations and also future work. 

III. PRELIMINARIES 
This section describes the operation of 

PTAM. We assume that the camera has already 
been calibrated and all the internal parameters 
are available known. The system uses FAST-10 
[9] corner features and an image pyramid for 

multi-scale feature detection. When the system 
is started, the five-point stereo algorithm [10] is 
employed to initialize the map similar to the 
processing described in [11-13]. For this the 
system uses two frames of the video stream 
assuming a known translation between these 
two frames (e.g. 10 cm) which can be provided 
by the robots odometry. So the initial map has a 
roughly correct scale. The system further 
consists of two threads, a tracking thread and a 
mapping thread, running in parallel on a dual-
core computer. 
Camera pose is estimated for each new image 
by the tracking thread, without updating the 
map (circumventing the chicken-and-egg 
problem mentioned above). The map is only 
updated when a new so-called key frame comes 
in. Keyframes are added only when the 
following conditions are satisfied: 

• Minimum time duration between keyframes 
The time since the last keyframe was added 
must exceed some frames; we use a value of 
twenty frames. 

• Minimum distance between new features 
and the features of last keyframe The 
minimum distance requirement avoids the 
common monocular SLAM problem of a 
stationary camera corrupting the map, and 
ensures a large enough stereo baseline for 
robust feature triangulation. 

• Minimum umber of new features This 
requirement avoids the interference of noise 
which can be caused by some irregular 
tremble of the camera, e.g. for hand-held 
cameras. 

With the features of the new key frame a 
computationally expensive bundle adjustment 
procedure is started to calculate 3D positions of 
matching features from the two key frames and 
the 3D points are added to the map. This 
procedure may run for considerable time 
(hundreds of milliseconds) but does so in its 
own mapping thread, ensuring that the tracking 
thread continues to updates camera poses at 
frame rate. 

Figure 1 illustrates the flow of processing 
between the threads. Note that the colored 
blocks and especially the third controlling 
thread constitute our additions to PTAM to fit 
for our mobile manipulation scenario as 
explained in the next section. 



Figure 1.  Detailed processing flow gragh of whole system, in the new 
controlling thread, if  the potential occlusion is detected uses the scale 

correction, otherwise drive the robot normally 

IV. MAP STITCHING 
PTAM is well suited for augmented reality 

(AR) situations, where typically the user who 
wears the AR gear does not move around too 
much but rather pans and tilts the camera. 
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a classic solution is multi-view detection which 
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sequence. But our system uses a monocular 
camera which is mounted on a small mobile 
robot. However we have a slightly different 
scenario, namely a mobile manipulation 
scenario with the following characteristics, 

In order to reconstruct 3D model of objects, 
a classic solution is multi-view detection which 
usually uses a calibrated circular motion image 
sequence. But our system uses a monocular 
camera which is mounted on a small mobile 
robot. However we have a slightly different 
scenario, namely a mobile manipulation 
scenario with the following characteristics, 

• Objects which the robot eventually wants to 
grasp and pick up rest on horizontal planes, 
such as tables or simply the floor. 

• Objects which the robot eventually wants to 
grasp and pick up rest on horizontal planes, 
such as tables or simply the floor. 

• We require complete information of the 
objects, i.e. all sides. 

• We require complete information of the 
objects, i.e. all sides. 

• Therefore the robot needs to move around 
the table or some specific area on the floor 
to get different views of the objects. 

• Therefore the robot needs to move around 
the table or some specific area on the floor 
to get different views of the objects. 

• So the robot is essentially controlled to 
center the view on the table or specific area 
on the floor and then move around more or 
less in a circle. 

• So the robot is essentially controlled to 
center the view on the table or specific area 
on the floor and then move around more or 
less in a circle. 

In such situations PTAM often fails. We 
assume the reasons are: 

In such situations PTAM often fails. We 
assume the reasons are: 

• Maps are rather small and dense, i.e. consist 
mainly of stuff on the table and not much 
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to be well suited to the bundle adjustment, 
which obviously would benefit from "wide" 

bundles for more robust camera pose 
estimates. 
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• PTAM does not model occlusion. If the 
camera mainly pans and tilts and essentially 
observes the scene from a stationary 
position, map points are either out of view 
(i.e. don’t project on the current image) or 
are in view and visible, i.e. should find a 
matching image feature. If we however 
move around the objects, objects will start 
to self-occlude or occlude each other. So 
map points that are in view (do project on 
the current image) are actually not visible, 
because they are occluded. The system does 
not know about occlusion and thus vainly 
tries to match these projected map points 
with image features. 
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• With most of the map points on our highly 
textured objects this means that large parts 
of the map can become occluded and even 
though the features are distinctive and false 
matches thus should be rare, the increased 
number of false matches together with a 
small number of actually visible (non-
occluded) map points seems to deteriorate 
estimation enough to cause failure. 
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smaller maps and stitch these together. 
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should be generated using the following 
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baseline for the 5-point stereo algorithm 
used in PTAMs initialization 

The re-initialization is not accurate enough 
due to the accumulative error of the pose 
estimation, so the scale differences in old and 
new map have to be fixed. Assuming a mostly 
horizontal movement, the matching points 
between last keyframe and current frame are 
searched using the following procedure: 
1. Each feature point searches the two 
“vertically” nearest points in the projected 
image. Figure 2 shows how the search 
processes. iβ  is the projective point of  Wβ  on 
the image, and the “vertically” nearest two 
points are iα  and iγ , because the vertical 
distance in the image is this principle for 
judging, it has been shown as 1v  and 2v . 1/ 2v v  
is stored as a parameter for each point, called 
vertical ratio. 
2. Search the matched pairs of feature 
points in the old and new maps using vertical 
ratio as the criteria for judgment. Once the 
system finds in the new map one feature point 
that has the same vertical ratio with one point in 
the old map, it will start to check the nearby 
points using the same criteria. Using red points 
in figure 2 as an example, we can show the 
process. If ,i newβ  is matched with ,i oldβ , ,i newα  and 

,i newγ  are the two “vertically” nearest points to 

,i newβ , the successful match is that both ,i newα  is 
matched with ,i oldα  and ,i newγ  is matched with 

,i oldγ . 

3. The corresponding points in the real 
world coordinate are used to calculate the ratio 
of scale correction. As shown in figure 2, wα , 

wβ  and wγ  are the corresponding points with iα , 
iβ  and iγ , respectively. 1r  and 2r  are the 

distances between these three points in the real 
world coordinate. The values of 1/ 2r r  in the 
new and old maps are utilized to calculate the 
ratio of scale correction. 

V. DETECTION OF OBJECTS 
Stitching together all sub-maps we get a 

combined map and use this for further 
processing. At first we remove "obviously" 
wrong points. Occasionally the map will 
contain point coordinates several orders of 

magnitude larger than the average (108 or 
something like that). These can be safely 
ignored. Then the dominant plane is computed 
using RANSAC, which we assume to be the 
table or the floor. Next we remove all points 
belonging to the dominant plane as well as all 
points below the plane. Finally we cluster the 
remaining points using the geometrical 
relationship among nearby points. These 
clusters are then considered object candidates to 
eventually be picked up (using of course a 
bigger robot than the one used in the current 
experiments). 

VI. RESULTS AND LIMITATIONS 
We show preliminary results using a small 

mobile robot (with quite terrible odometry) 
observing objects on the floor. The final system 
will be using a larger, more study robot 
equipped with a manipulator and elevated pan-
tilt camera, able to look down on and drive 
around tables. 

In Figure 3, (a) shows our mobile robot 
“Eddy” used in the experiments, (b) shows the 
scene of the experiment. The path of the robot 
is shown in (c) with the white line. (d) and (e) 
are snapshots of the system during initialization 
and tracking respectively. The comparison of 
the estimated trajectory of the robot and the 
ground truth is shown in (f), using green dots 
and blue line represent the estimated trajectory 
and the ground truth, respectively. (g) and (h) 
show the generated map. The green dots in (h) 
refer to the dominant plane which is the result 
of RANSAC. After the elimination of dominant 
plane points, the rest of the map points are 
grouped to the objects considering their 
geometrical relationship. Figure (i) shows the 
final result of the separated objects with 
different colors. 

As the system relies on tracking feature 
points, we obviously require the table and 
objects to contain sufficient texture, which is 
not a problem for many common household 
objects. PTAM itself already can handle maps 
with thousands of features. Adding our stitching 
procedure further improves scaling to larger 
maps. 

VII. CONCLUSIONS AND OUTLOOKS 
This paper presented a system that is capable 

of recovering textured objects resting on tables 
using a moving monocular camera. A state-of-



the-art SFM technique was extended to fit our 
needs for mobile manipulation scenarios, 
namely the combination of sub-maps into a 
combined map where a scale correction step 
was introduced in the stitching procedure. 
Estimating the table plane then allows 
segmentation of the objects resting on the table. 

At present, the robot odometry is only used 
during re-initialization for getting an 
approximate base-line for the stereo image pair. 
In the future we plan to fuse the pose estimates 
from visual tracking and robot odometry to 
increase robustness against temporary tracking 
failure. 
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Figure 3.  The experiment setting, results and comparison  


