
Reconstruction of Three Dimensional Spatial Clusters Using
Monocular Camera

Kai Zhou, Michael Zillich and Markus Vincze
Institute of Automation and Control
Vienna University of Technology

Gusshausstrasse 27-29, A-1040 Vienna, Austria
{zhou, zillich,vincze}@acin.tuwien.ac.at

Abstract—Vision is an increasingly important sensor modality for mobile robots. Visual SLAM
(simultaneous localization and mapping) has been used successfully for indoor and outdoor scenarios,
where the focus typically lies in localizing the robot and the environment only serves to provide sparse
landmarks for a large scale map. Structure from motion (SFM) techniques put emphasis on the actual
fine-grained 3D structure of the environment, resulting in a denser more detailed map. For our mobile
robot scenario we are interested in detecting objects in such a map. To this end we build on a state-of-
the-art SFM technique and use it to build a series of maps, which we stitch together after correcting
for scale and finally use the combined map to detect flat surfaces and objects resting on those surfaces.

Keywords—Simultaneous localization and mapping; Structure from motion; 3D reconstruction;
3D spatial clustering.

I. INTRODUCTION

Starting with pioneering work [1] in the
1990s, SLAM (Simultaneous localization and
mapping) in robotics community and SFM
(structure from motion) in computer vision
community have both made impressive
progress during the last two decades. Although
these two technologies originally came from
different scientific communities, the current
trend of using monocular cameras as sensors
makes them more and more similar. SLAM has
been widely applied for mobile robots and
autonomous vehicles in outdoor and indoor
environments. In these scenarios the focus lies
on robot localization and real-time capabilities
and hence only a sparse set of easily
distinguishable landmarks is used to build the
maps; an accurate three-dimensional
representation of the scene usually is not
necessary or feasible. SFM on the other hand
focuses on detailed scene reconstruction rather
than observer motion. Classical SFM typically
works offline in batch mode and uses
computationally expensive techniques such as
bundle adjustment. But ongoing improvements
of computer hardware make it possible to start
focusing on full three-dimensional scene
reconstruction in real time. So the boundaries
between SLAM and SFM start to blur.
We aim to build a system that allows a mobile
robot to detect and eventually grasp generic 3D
objects. We make the simplifying assumption
that objects of interest rest on flat horizontal
surfaces. This makes the otherwise very
difficult task of segmenting arbitrarily shaped
objects from the background tractable. We
build upon a state-of-the-art SFM technique [4]
and extend it to fit our particular needs. We
build a series of fine-grained maps and stitch
these together to form a combined map. As the
scale of maps generated from SFM is undefined
(moving a camera over a model landscape is
indistinguishable from flying over a real
landscape) we have to correct for the arbitrary
scale of the partial maps. We then use the
combined map to robustly detect the dominant
horizontal plane and finally segment the objects
resting on that plane.
The SFM technique we employ relies on
tracking corner points in the images. Points
matching over several images are used to build
a 3D map and simultaneously estimate the

camera motion. To provide at least a rough
estimation of scale an initial map is built from
two initial images using the 5-point stereo
algorithm, where the motion between these
images is assumed to be large enough (say 10
cm) and known approximately from an external
source such as the robots odomotry. Successive
camera motion is estimated per image using
map points projected into the image and their
matching detected corner points. At the same
time the map is extended as new corner features
enter the field of view. Some well-known
problems arising in this context are:

• Difficult initialization Simultaneous
estimation of camera pose from map points
and building of the map from camera
motion leads to a typical chicken-and-egg
problem.

• Expensive computation The whole
estimation process gets increasingly
expensive as the map grows.

• Enormous redundancy All the captured
landmarks usually are recorded and stored
without efficient suppression of outliers.

The SFM method we employ handles these
well for small AR workspaces. To adapt the
system to our mobile manipulation scenarios
we slightly extend it and then use the results to
detect tables and objects resting on them.

II. RELATED WORK
3D scene reconstruction from vision data has

a long tradition in computer vision. Binocular
stereo is among the most widely used
techniques. Two (or sometimes also three or
even more) cameras with a fixed, known
relative position allow 3D triangulation of
points matched in both images, where the
known epipolar geometry is used constrain the
search for matching points. A long base-line
between the cameras will lead to a more
accurate 3D reconstruction but at the same time
makes the matching of image points more
difficult and computationally expensive. Some
approaches use active sensors such as structured
light or line lasers. These methods however
suffer from susceptibility to strong external
light sources and limited range. Using a moving
monocular camera allows simple matching of
image features as the base-line between
consecutive pairs of images is small but offers
an infinitely large base-line over the whole
sequence of images and thus high accuracy.

Visual SLAM and SFM are two closely related
techniques of that category.

SLAM refers to a technology usually used
by mobile robots and autonomous vehicles to
build up a map within an unknown environment
while at the same time keeping track of their
current position. To our knowledge, EKF-
SLAM [1, 2] and FAST-SLAM [5, 6] are
current state-of-the-art recursive approaches.
Both of them use range sensors such as
ultrasonic sensors or time-of-flight laser sensors
and build a 2D (“bird's eye view”) map.
Extended Kalman Filters (EKF) were the first
recursive estimators for estimating map
structure and observer position over time.
Montemerlo et al. [5, 6] substituted the EKF
with a particle filter to increase robustness in
ambiguous situations and scalability to large
environments by taking advantage of the fact
that landmarks become probabilistically
independent of each other given a known
observer position. This greatly reduces the
dimensionality of the estimation problem and
allows a larger number of landmarks.

More recently also cameras are used for
SLAM. Davisons [3] "MonoSLAM" system
shows the feasibility of real-time visual SLAM
with a single camera. A FAST-SLAM based
approach has also been successfully applied
using of a single camera by E. Eade and T.
Drummond [7].

Klein and Murray [4] present a novel
method to estimate the camera pose and scene
structure in an unknown environment, which is
called Parallel Tracking and Mapping (PTAM).
Tracking and mapping are separated into two
threads, running in parallel on a dual-core
computer. A brief subjective comparison of
PTAM and MonoSLAM in [4, 8] demonstrates
that PTAM has a better performance especially
for larger maps.

The next section outlines the PTAM system
of [4] on which our work is built. Subsequent
sections describe in detail our extensions,
present results, limitations and also future work.

III. PRELIMINARIES
This section describes the operation of

PTAM. We assume that the camera has already
been calibrated and all the internal parameters
are available known. The system uses FAST-10
[9] corner features and an image pyramid for

multi-scale feature detection. When the system
is started, the five-point stereo algorithm [10] is
employed to initialize the map similar to the
processing described in [11-13]. For this the
system uses two frames of the video stream
assuming a known translation between these
two frames (e.g. 10 cm) which can be provided
by the robots odometry. So the initial map has a
roughly correct scale. The system further
consists of two threads, a tracking thread and a
mapping thread, running in parallel on a dual-
core computer.
Camera pose is estimated for each new image
by the tracking thread, without updating the
map (circumventing the chicken-and-egg
problem mentioned above). The map is only
updated when a new so-called key frame comes
in. Keyframes are added only when the
following conditions are satisfied:

• Minimum time duration between keyframes
The time since the last keyframe was added
must exceed some frames; we use a value of
twenty frames.

• Minimum distance between new features
and the features of last keyframe The
minimum distance requirement avoids the
common monocular SLAM problem of a
stationary camera corrupting the map, and
ensures a large enough stereo baseline for
robust feature triangulation.

• Minimum umber of new features This
requirement avoids the interference of noise
which can be caused by some irregular
tremble of the camera, e.g. for hand-held
cameras.

With the features of the new key frame a
computationally expensive bundle adjustment
procedure is started to calculate 3D positions of
matching features from the two key frames and
the 3D points are added to the map. This
procedure may run for considerable time
(hundreds of milliseconds) but does so in its
own mapping thread, ensuring that the tracking
thread continues to updates camera poses at
frame rate.

Figure 1 illustrates the flow of processing
between the threads. Note that the colored
blocks and especially the third controlling
thread constitute our additions to PTAM to fit
for our mobile manipulation scenario as
explained in the next section.

Figure 1. Detailed processing flow gragh of whole system, in the new
controlling thread, if the potential occlusion is detected uses the scale

correction, otherwise drive the robot normally

IV. MAP STITCHING
PTAM is well suited for augmented reality

(AR) situations, where typically the user who
wears the AR gear does not move around too
much but rather pans and tilts the camera.

ity
(AR) situations, where typically the user who
wears the AR gear does not move around too
much but rather pans and tilts the camera.

In order to reconstruct 3D model of objects,
a classic solution is multi-view detection which
usually uses a calibrated circular motion image
sequence. But our system uses a monocular
camera which is mounted on a small mobile
robot. However we have a slightly different
scenario, namely a mobile manipulation
scenario with the following characteristics,

In order to reconstruct 3D model of objects,
a classic solution is multi-view detection which
usually uses a calibrated circular motion image
sequence. But our system uses a monocular
camera which is mounted on a small mobile
robot. However we have a slightly different
scenario, namely a mobile manipulation
scenario with the following characteristics,

• Objects which the robot eventually wants to
grasp and pick up rest on horizontal planes,
such as tables or simply the floor.

• Objects which the robot eventually wants to
grasp and pick up rest on horizontal planes,
such as tables or simply the floor.

• We require complete information of the
objects, i.e. all sides.

• We require complete information of the
objects, i.e. all sides.

• Therefore the robot needs to move around
the table or some specific area on the floor
to get different views of the objects.

• Therefore the robot needs to move around
the table or some specific area on the floor
to get different views of the objects.

• So the robot is essentially controlled to
center the view on the table or specific area
on the floor and then move around more or
less in a circle.

• So the robot is essentially controlled to
center the view on the table or specific area
on the floor and then move around more or
less in a circle.

In such situations PTAM often fails. We
assume the reasons are:

In such situations PTAM often fails. We
assume the reasons are:

• Maps are rather small and dense, i.e. consist
mainly of stuff on the table and not much
structure in the background. This seems not
to be well suited to the bundle adjustment,
which obviously would benefit from "wide"

bundles for more robust camera pose
estimates.

• Maps are rather small and dense, i.e. consist
mainly of stuff on the table and not much
structure in the background. This seems not
to be well suited to the bundle adjustment,
which obviously would benefit from "wide"

bundles for more robust camera pose
estimates.

Mapping ThreadTracking Thread

System
Initialization

Map Exists?

Track Map

Motion Model
Update

if Keyframe?

Map
Initialization

Add Keyframe
into the Map

Yes

No

Yes

No

New Frame
Comes

Loop closure?

Yes

Offline Map
Generated

Controlling Thread

Control
Command

comes

Drive the Robot

Generate new
map and scale

correction

Occlusion?
Yes

No

• PTAM does not model occlusion. If the
camera mainly pans and tilts and essentially
observes the scene from a stationary
position, map points are either out of view
(i.e. don’t project on the current image) or
are in view and visible, i.e. should find a
matching image feature. If we however
move around the objects, objects will start
to self-occlude or occlude each other. So
map points that are in view (do project on
the current image) are actually not visible,
because they are occluded. The system does
not know about occlusion and thus vainly
tries to match these projected map points
with image features.

• PTAM does not model occlusion. If the
camera mainly pans and tilts and essentially
observes the scene from a stationary
position, map points are either out of view
(i.e. don’t project on the current image) or
are in view and visible, i.e. should find a
matching image feature. If we however
move around the objects, objects will start
to self-occlude or occlude each other. So
map points that are in view (do project on
the current image) are actually not visible,
because they are occluded. The system does
not know about occlusion and thus vainly
tries to match these projected map points
with image features.

• With most of the map points on our highly
textured objects this means that large parts
of the map can become occluded and even
though the features are distinctive and false
matches thus should be rare, the increased
number of false matches together with a
small number of actually visible (non-
occluded) map points seems to deteriorate
estimation enough to cause failure.

• With most of the map points on our highly
textured objects this means that large parts
of the map can become occluded and even
though the features are distinctive and false
matches thus should be rare, the increased
number of false matches together with a
small number of actually visible (non-
occluded) map points seems to deteriorate
estimation enough to cause failure.

Figure 2. The demonstration graph of matching principle Figure 2. The demonstration graph of matching principle

Therefore we extend PTAM to create several
smaller maps and stitch these together.
Whenever the failure is detected, a new map
should be generated using the following
procedure:

Therefore we extend PTAM to create several
smaller maps and stitch these together.
Whenever the failure is detected, a new map
should be generated using the following
procedure:

• store the current map to disk • store the current map to disk
• use the current frame and the last key frame

to re-initialize the system
• use the current frame and the last key frame

to re-initialize the system
• use the distance between camera poses of

current frame and last key frame as the
• use the distance between camera poses of

current frame and last key frame as the

baseline for the 5-point stereo algorithm
used in PTAMs initialization

The re-initialization is not accurate enough
due to the accumulative error of the pose
estimation, so the scale differences in old and
new map have to be fixed. Assuming a mostly
horizontal movement, the matching points
between last keyframe and current frame are
searched using the following procedure:
1. Each feature point searches the two
“vertically” nearest points in the projected
image. Figure 2 shows how the search
processes. iβ is the projective point of Wβ on
the image, and the “vertically” nearest two
points are iα and iγ , because the vertical
distance in the image is this principle for
judging, it has been shown as 1v and 2v . 1/ 2v v
is stored as a parameter for each point, called
vertical ratio.
2. Search the matched pairs of feature
points in the old and new maps using vertical
ratio as the criteria for judgment. Once the
system finds in the new map one feature point
that has the same vertical ratio with one point in
the old map, it will start to check the nearby
points using the same criteria. Using red points
in figure 2 as an example, we can show the
process. If ,i newβ is matched with ,i oldβ , ,i newα and

,i newγ are the two “vertically” nearest points to

,i newβ , the successful match is that both ,i newα is
matched with ,i oldα and ,i newγ is matched with

,i oldγ .

3. The corresponding points in the real
world coordinate are used to calculate the ratio
of scale correction. As shown in figure 2, wα ,

wβ and wγ are the corresponding points with iα ,
iβ and iγ , respectively. 1r and 2r are the

distances between these three points in the real
world coordinate. The values of 1/ 2r r in the
new and old maps are utilized to calculate the
ratio of scale correction.

V. DETECTION OF OBJECTS
Stitching together all sub-maps we get a

combined map and use this for further
processing. At first we remove "obviously"
wrong points. Occasionally the map will
contain point coordinates several orders of

magnitude larger than the average (108 or
something like that). These can be safely
ignored. Then the dominant plane is computed
using RANSAC, which we assume to be the
table or the floor. Next we remove all points
belonging to the dominant plane as well as all
points below the plane. Finally we cluster the
remaining points using the geometrical
relationship among nearby points. These
clusters are then considered object candidates to
eventually be picked up (using of course a
bigger robot than the one used in the current
experiments).

VI. RESULTS AND LIMITATIONS
We show preliminary results using a small

mobile robot (with quite terrible odometry)
observing objects on the floor. The final system
will be using a larger, more study robot
equipped with a manipulator and elevated pan-
tilt camera, able to look down on and drive
around tables.

In Figure 3, (a) shows our mobile robot
“Eddy” used in the experiments, (b) shows the
scene of the experiment. The path of the robot
is shown in (c) with the white line. (d) and (e)
are snapshots of the system during initialization
and tracking respectively. The comparison of
the estimated trajectory of the robot and the
ground truth is shown in (f), using green dots
and blue line represent the estimated trajectory
and the ground truth, respectively. (g) and (h)
show the generated map. The green dots in (h)
refer to the dominant plane which is the result
of RANSAC. After the elimination of dominant
plane points, the rest of the map points are
grouped to the objects considering their
geometrical relationship. Figure (i) shows the
final result of the separated objects with
different colors.

As the system relies on tracking feature
points, we obviously require the table and
objects to contain sufficient texture, which is
not a problem for many common household
objects. PTAM itself already can handle maps
with thousands of features. Adding our stitching
procedure further improves scaling to larger
maps.

VII. CONCLUSIONS AND OUTLOOKS
This paper presented a system that is capable

of recovering textured objects resting on tables
using a moving monocular camera. A state-of-

the-art SFM technique was extended to fit our
needs for mobile manipulation scenarios,
namely the combination of sub-maps into a
combined map where a scale correction step
was introduced in the stitching procedure.
Estimating the table plane then allows
segmentation of the objects resting on the table.

At present, the robot odometry is only used
during re-initialization for getting an
approximate base-line for the stereo image pair.
In the future we plan to fuse the pose estimates
from visual tracking and robot odometry to
increase robustness against temporary tracking
failure.

ACKNOWLEDGEMENT
This work was supported by the EU FP7 IST

Cognitive Systems Integrated Project “CogX”
ICT-215181-CogX. The author Kai Zhou
gratefully acknowledges the support from the
China Scholarship Council (CSC).

REFERENCES
[1] R. Simith, M. Self, and P. Cheeseman, “Estimating

uncertain spatial relationships in robotics,”
Autonomous Robot Vehicles, Springer 1990

[2] G. Dissanayake, P. Newman, S. Clark, H. F.
Durrant-Whyte, and M. Csorba, “An Experimental
and Theoretical Investigation into Simultaneous
Localisation and Map Building,” The Sixth Intl.
Symposium on Experimental Robotics VI, pp. 26–
274. IEEE Press, Sydney 1999

[3] A. Davison, “Real time simultaneous localisation
and mapping with a single camera,” ICCV 2003,
Nice 2003

[4] G. Klein and D. W. Murray, “Parallel tracking and
mapping for small AR workspaces,” Proc.
IEEE/ACM 6th Int. Symp on Mixed and Augmented
Reality, Nara 2007

[5] M. Montemerlo, and S. Thrun, “Simultaneous
localization and mapping with unknown data
association using fastslam,” Proc. of IEEE Intl. Conf.
on Robotics and Automation, Taipei 2003

[6] M. Montemerlo, S. Thrun, D. Koller, and B.
Wegbreit, “Fastslam 2.0: An improved particle
filtering algorithm for simultaneous localization and
mapping that provably converges,” IJCAI,
Acapulco, Mexico 2003

[7] E. Eade, and T. Drummond, “Scalable monocular
slam,” Proc. IEEE Intl. Conference on Computer
Vision and Pattern Recognition (CVPR06), pp. 469–
476. New York 2006

[8] R. Castle, G. Klein, and D. Murray, “Video-rate
Localization in Multiple Maps for Wearable
Augmented Reality,” Proc. Intl. Symposium on
Wearable Computers (ISWC08), Pittsburgh 2008

[9] E. Rosten, and T. Drummond, “Machine learning
for high-speed corner detection,” Proc. 9th European
Conference on Computer Vision ,Graz 2006

[10] H. Stewenius, C. Engels, and D. Nister, “Recent
developments on direct relative orientation,” ISPRS
Journal of Photogrammetry and Remote Sensing, pp.
60:284–294 2006

[11] D. Nister, O. Naroditsky, and J. R. Bergen, “Visual
odometry,” Proc. IEEE Intl. Conference on
Computer Vision and Pattern Recognition
(CVPR04), pp. 652–659, IEEE Computer Society.
Washington D.C. 2005

[12] E. Mouragnon, F. Dekeyser, P. Sayd, M. Lhuillier,
and M. Dhome, “Real time localization and 3d
reconstruction,” Proc. IEEE Intl. Conf. on Computer
Vision and Pattern Recognition, New York 2006

[13] C. Engels, H. Stewenius, and D. Nister, “Bundle
adjustment rules,” Photogrammetric Computer
Vision (PCV’06) 2006

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. The experiment setting, results and comparison

