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Abstract— Semantic visual perception for knowledge acqui-
sition plays an important role in human cognition, as well as
in the learning process of any cognitive robot. In this paper, we
present a visual information abstraction mechanism designed
for continuously learning robotic systems. We generate spatial
information in the scene by considering plane estimation and
stereo line detection coherently within a unified probabilis-
tic framework, and show how spaces of interest (SOIs) are
generated and segmented using the spatial information. We
also demonstrate how the existence of SOIs is validated in the
long-term learning process. The proposed mechanism facilitates
robust visual information abstraction which is a requirement
for continuous interactive learning. Experiments demonstrate
that with the refined spatial information, our approach provides
accurate and plausible representation of visual objects.

I. INTRODUCTION

Knowledge extension through interactive continuous learn-

ing is a desirable property of any cognitive robot. As the

most important knowledge resource, visual perception for

cognitive robots has received widespread attention in the

last decades [1][2][3][4]. An interactive learning robotic

system, which is capable of obtaining information from

visual sensors as well as information provided by a human

teacher, can facilitate and increase the robustness of the

knowledge extension process. It also requires sophisticated

functionality from the underlying visual system:

1) The bottom-up visual attention mechanism, required

to generate focus of attention without any prior information

about the objects and scene.

2) The exhaustive modelling of objects in the scene,

which forms the underlying base of high-level conceptual

properties, such as colour, 3D shape properties and pose.

3) A robust visual system that can handle temporary

occlusions and re-identify the objects after re-appearance,

since the tutor might remove or introduce new objects

in the scene. Note that since there are no detailed mod-

els of the objects available, well-developed object detec-

tion/recognition/tracking techniques cannot be implemented

directly.

To meet these requirements, we design a new visual at-

tention mechanism as the underlying information abstraction
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Fig. 1: Scenario demonstrating interactive learning between

robot George and tutor.

system for our robot George1, depicted in Fig. 1. Our visual

information abstraction system computes 3D spatial layout

and stereo line features coherently, and yields spaces of

interest (SOIs) from the resulting spatial geometry. These

SOIs are subsequently validated by tracking them over time,

based on persistence, stability and size. As segmentation

based on the stereo 3D data alone tends to be imperfect and

can include background, especially for weakly textured ob-

jects, stable SOIs are augmented with a precise segmentation

mask using the graph cut algorithm [5] based on combined

colour and 3D information. Object properties to be learned,

such as colour and shape, are then extracted based on the

segmentation mask.

The paper is organized as follows. In §II we introduce

the background and review state-of-the-art solutions. §III
gives an overview of the system competencies. In §IV we

describe how to use coherent stereo line detection and plane

estimation for reasoning about accurate spatial abstraction

and SOIs. The detailed validation of the SOIs in continuous

learning, as well as the generation of segmentation masks

using SOIs, are outlined in §V. Subsequent sections present

the experimental results, evaluations. Conclusions are given

at the end of the paper and the future work is shortly

discussed as well.

1The robot can be seen in action in the video accessible at
http://cogx.eu/results/george.



II. RELATED WORK

In this section, we will present an overview of conven-

tional visual perception systems for robotic learning systems,

then introduce recent work on holistic scene understanding

from which we draw inspiration.

Due to the lack of high-level representations of visual

objects, interactive robotic learning systems usually group

coherent low-level features as the visual information ab-

straction mechanisms for segmenting irregular regions from

background (e.g., coloured blobs [6], object proper motion

[1], spatial reasoning [2][3] or mixture of models [7][8]).

In all these approaches, planar surface estimation for spatial

reasoning has attracted the most widespread attention, since

the studies in multiple subjects, such as psychology [9],

ecology [10], computer vision [11] and robotics [12], have

provided evidence that planar surface estimation paves the

way to build up the hierarchical structure of a scene which

constitutes behaviour-relevant entities as well as dominates

man-made real-world environments. However, the afore-

mentioned research obtains visual information using plane

estimation for spatial reasoning in isolation.

On the other hand, the availability of coherent spatial

abstraction and object detection can be a crucial advantage

for any visual component. This coherent processing, also

known as holistic scene understanding can provide significant

improvements by considering the relationships governing the

structure of the scene (spatial layout, objects in the scene,

etc.), thereby improving the performance of each sub-task

in the integrated process [13][14][15]. Hence, we unify a

generic plane estimation method and a bottom-up stereo line

feature detection in a joint probabilistic model to provide

refined supporting surfaces. Any parts sticking out from the

supporting surface form spaces of interest (SOIs), without

regard to its properties. The resulting SOIs are fed into a 2D

segmentation scheme for producing accurate object masks,

which are used for recognition or learning.

Note that our visual information abstraction system is built

atop the CoSy Architecture Schema (CAS) – a distributed

asynchronous architecture [16], which facilitates inclusion of

other components that could bring additional functionality

to the system in a coherent and systematic way (such as

navigation and manipulation).

III. SYSTEM COMPETENCIES

The Visual SubArchitecture (Visual SA) of our interactive

robotic system processes the scene as a whole using stereo

pairs of images and provides quantitative analysis of the

spaces of interest, which is followed by segmentation of po-

tential objects and local processing. Visual features are then

extracted and used for recognition and learning of objects

and qualitative visual attributes. Based on the recognition

results, a private belief about every object is generated in the

mediative layer. The overall data flow of the entire robotic

learning system is depicted in Fig. 2 and this paper will only

concentrate on the quantitative layer of visual SA. (see [17]

for the detailed description and evaluation of our interactive

robotics learning system.)
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Fig. 2: Schematic system architecture. This paper focuses on

the quantitative layer of Visual SubArchitecture (Visual SA).

IV. VISUAL INFORMATION ABSTRACTION

We describe how to detect the stereo lines and estimate

planar surfaces independently. The unification of the detected

stereo lines and planes for SOI generation will be addressed

in the latter part of this section.

A. Stereo Line Detection

The stereo line extraction is a strict bottom-up approach,

First, edges are detected from image pairs with an adaptive

canny edge detector before we fit lines into the extracted

edgel chains using the method of Rosin and West [18]. To

estimate 3D information, we have to match the lines of the

stereo image pair. For this task, the mean-standard deviation

line descriptor (MSLD) of [19] together with the constraint of

epipolar lines is utilized in the calibrated stereo camera setup.

We then use line-based stereo matching of specific feature

points to calculate the proper geometric 3D localization of

the lines.

To assess a confidence value for stereo matched lines, we

take into account lines that are almost parallel to the epipolar

line as well as lines pointing away from the viewpoint

typically have higher errors in 3D reconstruction. The angles

between the epipolar line and the matched lines in the left

and right image (θ2Dl, θ2Dr) as well as the angle between

the line and the z-coordinate in the camera coordinate frame

(θ3Dz), after normalization between 0 and 1 are used to

generate a confidence value:

p(f) =
θ2Dl

π/2
· θ2Dr

π/2
· θ3Dz

π/2
(1)

Note that the resulting value p(f), although in the range

of [0, 1], is not a probability. Rather, this value denotes the

quality and correctness of the reconstructed lines. Thresh-

olding can produce a true/false judgement, which may be

applied in a qualitative reasoning framework, or for learning.

We use these quantities in the holistic scene understanding



Fig. 3: Three plane estimations (each contains 300 points

with Gaussian noise) are displayed. The blue dashed lines

are inlier boundaries, and green lines are the side views of

the estimated planes. The black arrows denote the average

normal vectors r̄ of each plane. In the top case, points are

evenly distributed and the average normal vector is also

approximately equivalent to the normal of the estimated

plane. In the center and bottom cases, the data points are

unevenly distributed but in different ways. Our assessment

criterion (Eq. 2) can effectively distinguish the center uneven

case and keep the bottom one as the correct estimation, while

the typical evaluation criteria (e.g. the average distance of all

the inliers to the estimated plane) cannot.

model as the measure of expected likelihood of the correct

line detection, as discussed in §IV-C.

B. Supporting Surface Estimation

It has been verified in [20][21] that taking into account

data connectivity in evaluating hypotheses of RANSAC

based approaches can significantly improve performance in

plane fitting tasks. However, [20] applied CC-RANSAC to

detect multiple planes in situations with only two nearby

planar patches, such as steps, curbs or ramps. Unfortunately,

the estimated results of CC-RANSAC might be unreliable

when there are objects on the planar surfaces, especially

when objects cluster together on part of the planar surface

(e.g. Fig.7). We adopt CC-RANSAC [20] as the underlying

plane estimator and assign confidence values to the estimated

planes by calculating the average normal vector of connected

points. This confidence value is used for the joint probability

maximization and will be addressed in detail in §IV-C. Our

plane refinement facilitates more reliable estimation than

using CC-RANSAC only (experiments in §VI-A).

We start from the RANSAC hypotheses generation and

evaluate each hypothesis only on a set of points C = {ci, i =
1, 2, . . . ,m} that belong to the same connected planar com-

ponent, as in [20]. Consider three points, XCi , XCj , XCk
, the

normal vector of the plane generated by these three points

is rtijk = VLij
× VLjk

, where VLij
is the vector joining

XCi
and XCj

. The XCi
, XCj

, XCk
are removed from C and

operation proceeds by considering the next three neighboring

points and calculating rt+1
ijk , which proceeds until there are

less than 3 points left in C. The average normal vector r̄
of all the points in C is computed using the collection of

{r1ijk, . . . , rtijk, . . .}. We define θCS as the angle between the

average normal vector r̄ and normal vector n of the estimated

plane S, then we have the confidence value for the plane S,

Con(S) = (1− θCS

π/2
) · k

N
(2)

where k denotes the number of inliers belonging to the

estimated plane and N is the number of points in the entire

dataset. The first part of Eq. 2 measures how even the

points distribute in the inlier boundary (see fig. 3 for better

illustration), the second part of Eq. 2 favours planes with

more inliers. Eq. 2 in essence represents the continuation

and connectivity of all the inliers belonging to the estimated

plane. Higher confidence values denote better quality of the

estimated plane.

Again the above confidence does not explicitly represent a

probability. However, we can use these confidence values to

approximate a probability distribution by generating samples

around the estimated plane and weighting these samples with

confidences. Given the plane S returned by CC-RANSAC,

and S̃ a generated sample near S, we formulate the proba-

bilitiy distribution in the following way,

p(S̃|Con(S̃)) =
p(Con(S̃)|S̃)p(S̃)

p(Con(S̃))

=
[(Con(S̃) > t)]p(S̃)

p(Con(S̃))

(3)

Here t is a threshold and [ ] denotes the Iverson bracket:

[X] =

{
1, if X is TRUE

0, otherwise
(4)

With the Iverson bracket, the probability p(S̃|Con(S̃)) is

proportional to the prior for the sampled plane S̃ whenever

Con(S̃) > t, and 0 elsewhere. In other words, p(Con(S̃)|S̃)
facilitates thresholding of plane samples with low confidence.

We draw samples randomly from the neighboring area of

S to generate S̃, and S̃ ∼ N (μn, σn)N (μh, σh), where n
and h are the normal vector of plane S, and the distance of

plane S to the origin. Hence, p(S̃) is a Gaussian distribution

and assigns higher probabilities to the samples near to the

estimated plane.

C. Unified Probabilistic Framework

Given the likelihoods for representing the correct detection

of the detected stereo lines and estimated planes as shown

before, p(S) and p(E|W ) denote the prior probability of the

plane estimates S = {si} and probability of image evidences

E produced by the stereo line candidates W = {wi}. For

each line candidate wi, we introduce a boolean flag ti,
where ti = 1 denotes positive detection of the feature.

Therefore, the stereo line detection can be represented with

a combination of detection result and assigned flag, i.e.

W = {wi} = {fi, ti}, where f is the collection of the feature

detection results {f1, . . . , fM}.
According to Bayes’ theorem, p(E|W ) =

p(W |E)p(E)/p(W ), where P (W |E) is the detection’s

confidence returned by the detector as in §IV-A. And



the p(E) and p(W ) can be considered to be uniformly

distributed, therefore p(E|W ) ∝ p(W |E).
With the probabilistic representation of planes and stereo

lines, we formulate the joint probability model of the holistic

scene as follows,

p(S,W,E) = p(S)

M∏
j=1

p(wj |S)p(E|wj)

=

K∏
i=1

p(S̃i|Con(S̃i))

M∏
j=1

p(fj , tj |S)p(ej |fj , tj)
(5)

where K,M are the number of plane estimates and line

candidates, respectively. p(fj , tj |S) is the probability of

feature detection with the underlying geometry, and denotes

the relation between supporting planes and detected features.

Since the boolean flag tj is determined by both scene geome-

try S and feature detection results f = {f1, . . . , fM}, and the

feature detection process is independent with scene geometry,

we have p(fj , tj |S) = p(tj |fj , S)p(fj |S) ∝ p(tj |fj , S).
Consequently Eq. 5 can be rewritten as

p(S,W,E) ∝
K∏
i=1

p(S̃i|Con(S̃i))

M∏
j=1

p(tj |fj , S)p(fj , tj |ej)
(6)

To sum up, our joint probabilistic model consists of three

parts, (1) the probability that the estimated plane is at S̃,

(2) the likelihood of positive stereo line detection with the

underlying plane estimation, (3) the confidence value of

detected lines returned by the stereo line detection algorithm.

The first and last probabilities are given using Eq. 3 and Eq. 1

respectively. The second probability is determined by the

distance and angle between detected stereo lines and planes:

p(tj = 1|fj , S) =

⎧⎪⎨
⎪⎩
| cos 2θj | · αε

dj
if 0 ≤ θj <

π

4

| cos 2θj | · ε

dj
if

π

4
≤ θj <

π

2

(7)

where θj is the angle between line j and estimated plane,

dj denotes the distance of the mid-point of the line j to the

plane. As defined in RANSAC, the inlier scale parameter ε
is used to collect points, which are at a distance smaller than

ε from the estimated plane. Eq. 7 in essence gives a higher

confidence value to lines which are parallel or perpendicular

with the estimated plane, as well as lines which are geomet-

rically close to the plane. Since approximately parallel lines

are more likely to be found on top of objects, the distances of

these lines to the estimated plane are usually larger than the

approximately perpendicular lines. Hence, we use a weight

parameter α (empirically set to 10), which denotes that the

approximately parallel lines will be taken into account when

the distances of these lines to the supporting plane are less

than αε.) to trade off these two kinds of lines.
To maximize the joint probability, we present the optimiza-

tion problem as argmaxsi,tj (ln p(S,W,E)), the logarithmic

formulation can be rewritten as,

ln p(S,W,E) =

K∑
i=1

ln p(Si|Con(Si))

+

M∑
j=1

[ln p(tj |fj , S) + ln p(fj , tj |ej)]
(8)

where Si, tj are the parameters to be estimated. We select

the plane which has the highest confidence value of all the

plane estimation results, and only consider this plane as the

scene geometry for the joint probabilistic model optimiza-

tion. Then the first part of Eq. 8 is a constant and the second

part can be calculated independently through M 3D matched

lines comparisons of ln p(tj = 0|fj , S) + ln p(fj , tj = 0|ej)
with ln p(tj = 1|fj , S) + ln p(fj , tj = 1|ej). After labeling

all the stereo lines, the pose of the plane with the highest

confidence is refined by searching the nearby planes S̃. This

refined pose should satisfy the criterion of maximizing the

number of stereo lines parallel or orthogonal to it.

V. SOI VALIDATION AND REFINEMENT

In order to autonomously learn visual object concepts,

the system needs to tackle obstacles and the variation in

positions of the objects due to the interaction of tutor and

robot. Since initially there are no models for objects yet, the

system cannot rely on model-based recognition, but requires

a more general mechanism.

A. SOI Validation

The validation of the SOIs is based on their persistence,

stability and size. We use three SOI features to check

if the current SOI is matched with any existing one, 1)

Jensen-Shannon divergence (JSD) is utilized for measuring

the similarity between two normalised colour histograms of

current and previous SOIs, 2) the ratio of the number of

matched SIFT features in the two SOIs to the number of the

SIFT features of the previous SOI; this measurement is only

active when there is a reasonable number of SIFT features

(nF > τ ). 3) the difference between radii of the bounding

spheres of two SOIs divided by the radius of the previous

SOI. Given one SOI O from the current SOI list and SOI Õ
from the previous SOI list, then the deviation of these two

SOIs dO,Õ can be computed as follow,

dO,Õ = w1D(HO,HÕ)+w2

|nF (Õ)− nF (O|
nÕ

+w3
|rÕ − rO|

rÕ
(9)

where weight parameters w1 +w2 +w3 = 1 and w1 = α,

w2 = βδ(nF (S̃) > τ), w3 = γ, α, β are set to 0.6 and

0.2. D(HO,HÕ) is the Jensen-Shannon divergence of two

normalised colour histograms. JSD provides a more appro-

priate measure of dissimilarity between two color histograms

and it is numerically more stable than other measures such

as Kullback-Leibler (KL) divergence [22]. In essence, dS,Õ
can be used to examine the similarity of tracked SOIs by

considering the difference between their colours, textures and



Fig. 4: Track IDs of detected SOIs across frames.

Fig. 5: 3D point cloud representation of the plane estimation

results, note that the figure is best viewed in color.

sizes. Fig. 4 demonstrates correct identifications of various

SOIs extracted from a video sequence of the scene.

B. Segmentation Mask

The remaining points sticking out from the estimated

planes are segmented using 3D flood-filling and the resulting

clusters yield SOI bounding spheres. Note that the bounding

sphere is taken to be slightly larger than the actual point

cluster to ensure that it also contains a part of the plane

points, needed for the following segmentation step. Fig. 5

shows a multi-layer shelf scene and corresponding recon-

structed point cloud. The detected planes are represented in

terms of different colours and remaining sticking out points

are shown in yellow. Because of the inherent limitation

of stereo reconstruction at poorly textured surface parts

and shadowing effects between left and right camera, the

resulting SOIs require further refinement using 2D colour

based segmentation.

The 2D segmentation is based on energy minimization
with graph cuts. The back-projected 3D points within the

SOI provide colour and spatial cues for the object and its

background. The cost function for the object combines the

colour cost with the spatial cost, while the cost function for

the background consists of the colour cost component only.

The spatial cost is simply the distance between the point

and the object’s nearest back-projected 3D point. The colour
cost, on the other hand, is the average distance between the

point’s colour and the K nearest colours from the sample (K
is determined based on the sample size). Besides foreground

and background cost functions, there is a third cost function

with a fixed cost to cover those areas where both former

functions have high costs. While these areas are considered

uncertain and might be resolved on higher levels of the

system’s cognition, they are deemed as background at this

stage by the recognizer.

The distance between two colours is calculated in the HLS

Remove points of
real plane, add
two synthetic
planes

Fig. 6: Generatic synthetic data of two nearby planes.

colour space:

ΔHLS = Δ2S + (1−ΔS)ΔHL (10)

ΔHL = S̄ΔH + (1− S̄)ΔL, (11)

where ΔH , ΔL and ΔS are the distances between the two

HLS colour components, while S̄ is the average saturation

of the two colours. All the parameters are normalised to

values between 0 and 1. The H distance has to be further

renormalised and truncated because of its circular parameter

space. The contribution of each colour component to the

overall distance between the two colours is thus determined

by the saturation difference and saturation average.

The code for the graph cut algorithm was kindly provided

by Boykov, Veksler and Zabih [5].

VI. EXPERIMENTS

In order to compare the spatial abstraction results of the

proposed approach with other methods, we first test this with

synthetic data. Then experiments with our George robot in

continuous interactive learning scenario demonstrate that our

visual information abstraction mechanism provides plausible

and robust visual object concepts for the continuous learning

system.

A. Better Spatial Abstraction

The accuracy of plane estimation is important since the

plane estimates are utilized to generate SOIs which are

formed by the points sticking out from the supporting planes.

Incorrect estimation of supporting planes usually produces

incomplete segmentation of objects, which is one of the main

sources of failure for our system.

In order to compare the performance of the proposed

joint probabilistic approach with CC-RANSAC, we generate

a synthetic dataset with noisy 3D points. A simple scene

consisting of one supporting plane and object clutter is used.

All points belonging to the dominant plane (points shaded

red in left image of Fig. 6)) have been manually removed

and replaced with two synthetic supporting planar patches

(parallel to the original plane), modeling two supporting

surfaces at different heights. This synthetic scene facilitates

qualitative comparison of CC-RANSAC and the proposed

method with different scales of inlier noise. These planar

patches have been generated with 15000 points (7500 each),

corrupted by Gaussian noise of standard deviation σ. The

coloured points (total amount of points of three objects is

8039) in right image of Fig. 6 represent the objects.

In Fig. 7 we compare the plane estimation results of

RANSAC, CC-RANSAC and the proposed approach on the



(a) RANSAC (b) CC-RANSAC (c) proposed approach

Fig. 7: Comparison of plane estimation results of RANSAC,

CC-RANSAC and the proposed method using synthetic data

(side view). Points on the planes are corrupted by Gaussian

noise with σ = 0.01, the height between two planes is 0.05m.

The typical estimation results of the three tested methods are

illustrated with red points.
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Fig. 8: Qualitative comparison of RANSAC, CC-RANSAC

and the proposed method with various inlier noise scale.

synthetic dataset. The red points represent the typical results

of inliers belonging to the detected planes (as seen from

the side view) and the proposed method clearly outperforms

RANSAC and CC-RANSAC. The estimated plane using CC-

RANSAC is tilted towards the objects because of the higher

density of points in that area. The isolated plane estimation

with CC-RANSAC is also worse because RANSAC based

methods always converge to the largest plane near the

optimum, which in this case is the diagonal plane.

We compare RANSAC, CC-RANSAC and the proposed

holistic method on synthetic data with different inlier noise

scale, each method is given 20 trials and the results in

average are collected. The recall rate measures the proportion

of estimated inliers in actual inliers of the model, and the

precision rate presents the proportion of correctly estimated

inliers in all the estimated inliers. From Fig. 8 we see with

increasing inlier noise scale, the proposed method produces

the best plane estimation in terms of accuracy and stability.

B. Robust Robotic Vision

We collected a database of 4650 image pairs of 310

objects (each object is observed from 15 views); some of

them are shown in Fig. 9. The results of the subsequent

segmentation step are shown in the right part of Fig. 9. On

the left side, the SOIs are marked on the original image with

IDs (yellow numbers) and the red circles denote the points

belonging to the supporting surfaces. The following 2D

graph-cut segmentation only processes in the neighbouring

area of SOIs. The right side zooms on these area. The

top images show the position of backprojected 3D points

(light green for object, red for background, dark green for

unknown) and the segmentation (grey for object, white for

Fig. 9: Observed scene and sample objects with segmentation

results.

background), the bottom images represent the graph cut

cost functions for object and background where the brighter

colour denotes greater cost. We can see that despite the

fact that the backprojected 3D points are not very precise

due to rather large noise, the graph-cut segmentation can be

successfully initialised and provides a precise object contour.

Fig. 10 illustrates the test in the multi-layer shelf scene.

The top image shows the backprojected 3D points belonging

to the estimated planes, the bottom part of the figure demon-

strates sample object segmentations. We observe that the

yellow carton box is neglected due to the inherent limitation

of the color-based 2D graph-cut segmentation. So we can use

the backprojected SOI directly as the object mask in case the

graph-cut segmentation returns trivial mask.

VII. CONCLUSION

In this paper, we present a visual information abstraction

mechanism and how it performs in a continuously learning



Fig. 10: More complex scene (a multi-layer shelf with sparse

objects inside) and sample objects with segmentation results.

robotic system. We generate spatial information in the scene

by considering plane estimation and stereo line detection co-

herently within a unified probabilistic framework, and show

how spaces of interest (SOIs) are generated and segmented

using the spatial information. We also demonstrate how the

existence of SOIs is validated in the long-term learning pro-

cess. Experiments demonstrate that our system can produce

more accurate spatial information, thereby providing robust

and plausible representation of visual objects.

Currently, we are investigating the utilization of the pro-

posed visual information abstraction system with a mobile

robotic platform which enables our robot to acquire novel

information in a more active and autonomous way.
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