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Tržaška 25, SI-1001 Ljubljana, Slovenia

bInst. for Computer Graphics and Vision, Graz University of Technology, Austria

Abstract

A reliable system for visual learning and recognition should enable a selective

treatment of individual parts of input data and should successfully deal with noise

and occlusions. These requirements are not satisfactorily met when visual learning

is approached by appearance-based modeling of objects and scenes using the tradi-

tional PCA approach. In this paper we extend standard PCA approach to overcome

these shortcomings. We first present a weighted version of PCA, which, unlike the

standard approach, considers individual pixels and images selectively, depending on

the corresponding weights. Then we propose a robust PCA method for obtaining

a consistent subspace representation in the presence of outlying pixels in the train-
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ing images. The method is based on the EM algorithm for estimation of principal

subspaces in the presence of missing data. We demonstrate the efficiency of the

proposed methods in a number of experiments.

Key words: appearance-based modeling, robust learning, principal component

analysis, weighted PCA, missing pixels, robust PCA

1 Introduction

The construction of suitable object and scene representations plays a crucial

role in the process of visual learning and recognition. Previous experience,

prior knowledge, and the information resulting from other cognitive processes

affect the level to which the newly acquired information is incorporated in

the representation. One may also expect more recent (or more reliable, or

more informative, or more noticeable) experiences to have a stronger influence

on the model than others. The psychophysical studies of object recognition

suggest that human perception is more tuned to some (e.g., more frequently

experienced) views than to the others [1,2]. Therefore, a learning algorithm

should enable a selective influence of individual training images in the process

of learning. It should also enable a selective treatment of individual pixels as

well.

In real world applications, it is often the case that parts of the data are un-

available. The learning algorithm should compensate for the missing data and

build a consistent representation. In addition, images of objects and scenes
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may contain noise, occlusions, specular reflections or other undesirable ef-

fects. The ultimate system for visual learning and recognition should be able

to determine the objects of interest in the learning stage and include in the

representation only relevant information.

Visual learning is often approached by the appearance-based modeling of ob-

jects and scenes. One popular approach to model building is principal com-

ponent analysis (PCA). However, PCA in its original form has several short-

comings with respect to the premises mentioned above.

In this paper we present approaches that overcome these problems. In Sec-

tion 2 we first present a generalized weighted version of PCA, which, unlike

the standard approach, considers individual pixels and images selectively, de-

pending on the corresponding weights. In Section 3 we present a special case

of weighted PCA, which is adopted for learning from partial data. Since stan-

dard PCA is intrinsically non-robust to non-Gaussian noise, we present in

Section 4 a method for robust learning that is able to detect inconsistencies in

the training images and build the representations from consistent data only.

The proposed methods are evaluated in Section 5. In the last section we sum-

marize the paper and outline some work in progress.

1.1 Related work

In PCA, the basis vectors of the principal subspace, i.e., the principal direc-

tions in the input space, can be estimated by minimizing the reconstruction er-

ror of all reconstructed input vectors. A similar, but probabilistically oriented

approach, was taken also by Roweis, who derived an algorithm [3] for calcu-

3



lating principal subspace, which is based on EM (expectation-maximization)

algorithm [4]. A very similar Probabilistic PCA algorithm was also indepen-

dently proposed by Tipping and Bishop [5].

The two-step structure of the EM algorithm allows us to introduce weights

in order to perform weighted learning or learning from incomplete data. In

this respect, several methods with different derivations but very similar real-

izations have already been proposed [6–10]. Our basic algorithm for weighted

learning, which we will derive by modifying the EM algorithm [3], is closely

related to these approaches, since in principle they all minimize the same er-

ror function – the weighted squared reconstruction error. Like in [10], we also

present different algorithms, which are specialized for different types of weights

(temporal, spatial). In addition, we adapt the EM algorithm for learning from

incomplete data and further extend this algorithm with the regularization

term, which adequately constrains the reconstructed values in missing pixels.

Furthermore, we present a new approach to learning from incomplete data by

iterative reconstruction of missing pixels.

The weights or outlying pixels are, however, very often not known in advance

and they have to be determined in the learning process. And since in the

learning stage the model of the object or the scene is just being built, there

is no reliable previous knowledge, which could be used to estimate outliers 1 .

Nevertheless, some authors have tackled also the problem of the robust learn-

ing [19,8]. More recently, De la Torre and Black proposed a method for robust

principal component analysis based on M-estimation [20,10], which performs

1 Different approaches have been proposed to improve the robustness of the recog-

nition [11–18]. All of them, however, assume that the images in the learning stage

were ideal and that the visual model is correct and available.
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well on images with sufficient temporal correlation, but it is very time con-

suming. Lately, several incremental methods for robust subspace learning have

been presented [21,22] that tackle the problem of robust learning in an incre-

mental way. Finally, several methods that are used for robust factorization

have also been proposed (e.g., [23,24]). Though tailored to a different type of

problem, some of their principles are relevant for robust eigenspace learning

as well. The method for robust learning, which we will present in this work,

is most related to [20], however it is simpler and faster while still producing

similar results. Our proposed method iteratively detects outliers in all im-

ages, estimates the representation from inliers only, and reconstructs outlying

values.

1.2 Notation and background

We first briefly outline the standard PCA approach and introduce the nota-

tion.

Each image is represented as a vector x ∈ IRM . Let all N training images be

aligned in the data matrix X = [x1, ....,xN ] ∈ IRM×N . The low-dimensional

principal subspace of this high-dimensional input space is usually calculated

by the eigenvalue decomposition of the covariance matrix 2 C = 1
N
X̂X̂� of

the input data X, where x̂j , the columns of X̂, are the input images xj with

subtracted mean image µ. We denote the eigenvectors of C by ui (eigen-

images), and the corresponding eigenvalues by λi. As the variance is mainly

contained in the first eigenimages (those with the largest eigenvalues), only

2 If the image size M is larger than the number of training images N a similar

approach based on the inner product matrix is used [25].
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k � N eigenimages are retained, thus U = [u1, . . . ,uk] ∈ IRM×k. All the train-

ing images are then projected into the eigenspace and the coefficient vectors

aj = [a1j , . . . , akj]
� ∈ IRk , j = 1 . . . N (aligned in A ∈ IRk×N) are obtained:

aj = U�x̂j = U�(xj − µ) . (1)

Therefore, each image xj is approximated with the linear combination of the

eigenimages

xj ≈
k∑

i=1

aijui + µ . (2)

For a given dimension of the subspace k, PCA finds such principal axes

ul, l = 1 . . . k and coefficient vectors aj ∈ IRk, j = 1 . . .N that maximize

the variance of the projections of the training images and minimize the total

squared reconstruction error

E =
M∑
i=1

N∑
j=1

⎛
⎝x̂ij −

k∑
p=1

uipapj

⎞
⎠

2

. (3)

Thus, the principal axes and the principal components can alternatively be

estimated by minimizing (3). This is a nonlinear minimization problem and can

be solved by iterating the two-step procedure where first the coefficients are

estimated and then the principal axes are computed. Such an EM algorithm

as proposed by Roweis [3] looks as follows:

• E-step: A = (U�U)−1U�X̂

• M-step: U = X̂A�(AA�)−1 .
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2 Weighted PCA

Standard PCA can be extended to a weighted version by introducing weights

into Eq. (3). The weights are assembled in the matrix W ∈ IRM×N , where wij

is the weight of the i-th pixel in the j-th image. The goal is to minimize the

weighted squared reconstruction error

E =
M∑
i=1

N∑
j=1

wij

⎛
⎝x̂ij −

k∑
p=1

uipapj

⎞
⎠

2

. (4)

Here, the values of the matrix X̂ are obtained by subtracting the weighted

mean vector µ from the training images xj .

In practice, it is useful to deal with two types of weights: temporal weights tw ∈
IR1×N , which put different weights on individual images, and spatial weights

sw ∈ IRM , which put different weights on individual pixels within an image 3 .

Since different types of weights yield different algorithms for estimating the

weighted principal subspace, we will discuss both types of weights separately.

2.1 Temporal weights

Temporal weights determine the importance of individual images for estima-

tion of the principal subspace. If the temporal weight of an image is larger

than the weights of other images, the reconstruction error of that image should

be proportionally smaller than the reconstruction errors of the other images.

Similarly, the contribution of its principal components to the estimation of the

3 The left superscript is used to distinguish between temporal (tw) and spatial (sw)

weights. tw is a row vector, while sw is a column vector.
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variances should be larger in comparison with other principal components. For

instance, if a training image has the weight 2, while all other images have the

weight 1, the result of the weighted algorithm should be the same as the re-

sult of the standard algorithm having two copies of the particular image in

the training set.

Since all the pixels in an image are treated equally, the weight matrix W

contains the row vector tw in each row thus 4 W = 1M×1
tw. The principal

subspace can be obtained by maximizing the weighted variance, which can

be achieved by eigendecomposition of the weighted covariance matrix as pre-

sented in Algorithm 1.

Algorithm 1 : TWPCA – temporally weighted PCA

Input: data matrix X, temporal weights tw

Output: weighted mean vector µ, eigenvectors U, eigenvalues λ.

1: Estimate the weighted mean vector: µ = 1∑N

j=1
twj

∑N
j=1

twjxj .

2: Scale the input data centered around the weighted mean:

tx̂j =
√

twj(xj − µ), j = 1 . . .N .

3: if M ≤ N then

4: Estimate the weighted covariance matrix: C = 1∑N

j=1
twj

tX̂tX̂
�

.

5: Perform SVD on C. Obtain the eigenvectors U and the eigenvalues λ.

6: else

7: Estimate the weighted inner product matrix: C′ = 1∑N

j=1
twj

tX̂
�tX̂ .

8: Perform SVD on C′. Obtain the eigenvectors U′ and the eigenvalues λ′.

9: Determine the principal axes U: ui =
tX̂u′

i√∑N

j=1
twj

√
λ′

i

, i = 1 . . .N .

10: Determine the eigenvalues λ = λ′ .

11: end if

4 1M×N denotes a matrix of the dimension M × N , where every element equals 1.
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2.2 General weights

Before we derive the algorithm for estimating principal subspace using arbi-

trary weights, we will discuss the weighed estimation of subspace coefficients

considering spatial weights. Spatial weights control the influence of individ-

ual pixels within an image. Therefore, if a part of an image is unreliable or

not important for the estimation of principal components, its influence can be

diminished by decreasing the weights of the corresponding pixels.

The coefficients are traditionally estimated by the standard projection (1) of

an image x onto the principal axes. The coefficient estimation can, however,

also be formulated as a problem of finding a coefficient vector a that mini-

mizes the squared reconstruction error between the original image x and its

reconstruction [18]. Now, it is straightforward to introduce weights in this

minimisation process. The goal is to find a coefficient vector a that minimizes

the weighted squared reconstruction error:

e =
M∑
i=1

swi

⎛
⎝x̂i −

k∑
p=1

uipap

⎞
⎠

2

. (5)

The solution to this minimization problem (the vector a) can be found by

solving an over-constrained system of linear equations:

√
swix̂i =

√
swi

k∑
p=1

uipap , i = 1 . . .M . (6)

In a similar way we can also approach to the weighted estimation of principal

subspace considering arbitrary weights, thus to minimizing (4). The weighted

squared reconstruction error (4) can be minimized using a modified EM al-

gorithm. First, let us note that solving an over-constrained system of linear
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equations is equivalent to calculating the pseudoinverse of the corresponding

matrix. Now, by noting that aj = (U�U)−1U�x̂j = U†x̂j we can replace

E-step of the EM algorithm by solving the corresponding system of linear

equations for each aj , j = 1 . . .N . A very similar observation holds also for

M-step. Therefore, if we consider weights as well, we can estimate the principal

subspace by iteratively solving the following systems of linear equations:

• E-step: Estimate A in the following way: For each image j, j = 1 . . .N ,

solve the following system of linear equations in the least squares sense:

√
wijx̂ij =

√
wij

k∑
p=1

uipapj , i = 1 . . .M . (7)

• M-step: Estimate U in the following way: For each pixel i, i = 1 . . .M ,

solve the following system of linear equations in the least squares sense:

√
wijx̂ij =

√
wij

k∑
p=1

uipapj , j = 1 . . . N . (8)

At convergence, the columns of U span the space of the first k principal axes.

By expressing (7) and (8) in a more concise way (using pseudoinverse), the

modified EM algorithm for weighted PCA is shown 5 in Algorithm 2.

3 PCA on incomplete data

In real world applications, it is often the case that not all data are available.

The values of some pixels are missing or are totally unreliable. Such pixels

5 Subscript xi denotes the i-th column vector in the matrix X, while xi: denotes

the i-th row vector in the matrix X. .
√

A is an operator that calculates the square

root of each element of the matrix A. A ◦ B denotes the Hadamard (entrywise)

product between two matrices of equal dimension.
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Algorithm 2 : WPCA – weighted PCA

Input: data matrix X, weight matrix W, number of principal axes to be

estimated k.

Output: weighted mean vector µ, U spanning principal subspace.

1: Estimate the weighted mean vector: µi =

∑N

j=1
wijxij∑N

j=1
wij

, i = 1 . . .M .

2: Center the input data around the mean: X̂ = X − µ11×N .

3: Set the elements of U ∈ IRM×k to random values.

4: repeat

5: E-step: aj = ((.
√

wj11×k) ◦U)†(.
√

wj ◦ x̂j), j = 1 . . .N .

6: M-step: ui: = (.
√

wi: ◦ x̂i:)((1k×1.
√

wi:) ◦ A)†, i = 1 . . .M .

7: until convergence.

are referred to as missing pixels 6 . The estimation of the principal subspace

in the case of incomplete data can be regarded as a special case of weighted

PCA where the weights of missing pixels are set to zero. In this section we

will consider this special case of weighted learning more thoroughly.

3.1 Modified EM algorithm

First let us denote the sets of indices of non-missing (known) and missing

pixels in the j-th image with I•
j and I◦

j , respectively, and the sets of indices

of non-missing and missing pixels in the i-th row of the data matrix X with

6 E.g., in a range image, the depth is not defined in some pixels; in a panoramic

image obtained by a camera-mirror setup, the image is occluded by a mirror handle

– the corresponding pixels are not a part of the environment; when a robot holds an

object with a griper, the object is occluded by the gripper’s fingers – these pixels

can be detected and considered as missing pixels (non-valid, undefined data), as

opposed to other valid, defined – known pixels.
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I•
i: and I◦

i:, respectively.

Now, the goal is to minimize the reconstruction error of known pixels, thus in

E and M steps of the EM algorithm we have to set up the equations arising

from the non-missing pixels only:

• E-step: Estimate A in the following way: For each image j, j = 1 . . .N ,

solve the following system of linear equations in the least squares sense:

x̂ij =
k∑

p=1

uipapj , i ∈ I•
j . (9)

• M-step: Estimate U in the following way: For each pixel i, i = 1 . . .M ,

solve the following system of linear equations in the least squares sense:

x̂ij =
k∑

p=1

uipapj , j ∈ I•
i: . (10)

Here, the mean image is obtained by estimating the mean over the known

pixels:

µi =
1

|I•
i:|

∑
j∈I•

i:

xij , i = 1 . . .M . (11)

When dealing with images containing a considerable number of missing pixels,

such a formulation results in an ill-posed problem. The principal axes are

optimized to ensure the optimal reconstruction error in known pixels. Since

the reconstruction error in missing pixels is not considered in the minimization

process, the reconstructed missing pixels can have arbitrary values. Therefore,

the generalization ability of this algorithm is relatively weak. Thus, although

such an algorithm can produce very small reconstruction errors in known

pixels, it may at the same time produce very strange reconstructed values in

missing pixels.
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To alleviate this problem we impose additional application dependent con-

straints to the minimization process. When the images are ordered, as in the

case of image sequences, we can extend the algorithm to also include a smooth-

ness prior so as to ensure that the values of reconstructed missing pixels are

changing smoothly over time. Thus, in the M-step we minimize the second

derivative of the reconstructed missing pixels. The new M-step looks as fol-

lows:

• M-step: Estimate U in the following way: For each pixel i, i = 1 . . .M ,

solve the following system of linear equations in the least squares sense:

x̂ij =
k∑

p=1

uipapj , j ∈ I•
i:

0 = α
k∑

p=1

uip(ap,j−1 − 2apj + ap,j+1) , j ∈ I◦
i: , (12)

where α is the parameter which weights the influence of the smoothness

constraint.

Thus, the overall algorithm minimizes the following error function:

E =
N∑

j=1

∑
i∈I•

j

⎛
⎝x̂ij −

k∑
p=1

uipapj

⎞
⎠

2

+ α
N∑

j=1

∑
i∈I◦

j

⎛
⎝

k∑
p=1

uipa
′′
pj

⎞
⎠

2

. (13)

To summarize the algorithm in a more concise way we will introduce some

new notation. Let us partition a training image (a column in the data ma-

trix) x̂j into x̂•
j and x̂◦

j vectors of M• known and M◦ unknown values in x̂j ,

respectively, and assign the corresponding rows of U to U• and U◦. Similarly,

we can partition a row in the data matrix x̂i: into x̂•
i: and x̂◦

i: row vectors

of the N• known and N◦ unknown values in x̂i:, respectively, and assign the

corresponding columns of A to A• and A◦. Using this notation, the modified

EM algorithm for the estimation of the principal subspace from incomplete
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data is given in Algorithm 3.

Algorithm 3 : MPPCAtmpSm – PCA on incomplete data by temporal

smoothing

Input: data matrix X, weight matrix W with binary values, number of prin-

cipal axes to be estimated k.

Output: mean vector µ, U spanning principal subspace.

1: Estimate the weighted mean vector: µi = 1
N•

∑N•
j=1 x•

ij , i = 1 . . .M .

2: Center the input data around the mean: X̂ = X − µ11×N .

3: Set elements of U ∈ IRM×k to random values.

4: repeat

5: E-step: aj = U•†x̂•
j , j = 1 . . . N .

6: M-step: A′ = [a2 . . .aN , aN ] − 2A + [a1, a1 . . .aN−1]

ui: = [x̂•
i: 01×N◦ ][A• αA′◦]† , i = 1 . . .M .

7: until convergence.

8: Orthogonalise U.

9: Project input data on U: aj = U•†x̂•
j , j = 1 . . . N .

10: Perform PCA on A. Obtain U′ .

11: Rotate U for U′: U = UU′.

In the recognition stage, an input image x is projected into the principal

subspace U in an analogical way. The coefficients aj are obtained by solving an

over-constrained system of linear equations, which arise from the non-missing

pixels only:

x̂i =
k∑

j=1

ajuij , i ∈ I• , (14)

or, expressing it with the pseudoinverse:

a = U•†x̂• . (15)
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3.2 Iterative reconstruction of missing pixels

Alternatively, the principal axes in the M-step can be obtained by applying

standard PCA to all pixels providing that missing pixels are filled-in. The

question is how to optimally fill-in the values of the missing pixels. Since not

all the pixels of an image are known, some coordinates of the corresponding

point in the image space are undefined. Thus, the position of the point is

constrained to the subspace defined by the missing pixels. Given the principal

subspace U, which models the input data, the optimal location is a point in

the missing pixels subspace which is closest to the principal subspace. This

point is obtained by replacing the missing pixels with the reconstructed values,

which are calculated by (2) using the coefficients aj estimated in E-step of the

current iteration and the principal axes uj obtained in the previous iteration.

Therefore, the new M-step looks as follows:

• M-step: Estimate U by applying standard PCA to X with the recon-

structed missing pixels:

xij = yij , j = 1 . . .N , i ∈ I◦
j where Y = UA + µ11×N . (16)

The convergence of the algorithm can be sped up by a more efficient initializa-

tion of the principal axes U. Instead of simply setting its elements to random

values, one can estimate the initial values of U from an estimate of A obtained

by performing SVD on the inner product matrix C′, which is estimated from

the non-missing pixels only. The entire procedure is outlined in Algorithm 4.

An advantage of this approach is that it does not assume a smoothness prior,

therefore it is appropriate for visual learning from unordered image sequences

as well.
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Algorithm 4 : MPPCAitRec – PCA on incomplete data by iterative recon-

struction
Input: data matrix X, weight matrix W with binary values, number of prin-

cipal axes to be estimated k.

Output: mean vector µ, principal axes U.

1: Estimate the weighted mean vector: µi = 1
N•

∑N•
j=1 x•

ij , i = 1 . . .M .

2: Center the input data around the mean: X̂ = X − µ11×N .

3: Estimate the inner product matrix C′ from the known data:

c′ij = M
N |P|

∑
p∈P x̂pix̂pj , P = {p | p ∈ I•

i ∧p ∈ I•
j }, i = 1 . . . N, j = 1 . . . N.

4: Perform SVD on C′ yielding eigenvectors as an estimate for A.

5: Estimate an initial U: ui: = x̂•
i:A

•† , i = 1 . . .M .

6: repeat

7: E-step: Estimate A: aj = U•†x̂•, j = 1 . . . N .

8: M-step: Estimate U by applying standard PCA on X with reconstructed

missing pixels: xij = yij , j = 1 . . .N , i ∈ I◦
j where Y = UA +

µ11×N .

9: M-step: Estimate U by applying PCA on X with reconstructed missing

pixels: xij = yij , j = 1 . . .N , i ∈ I◦
j where Y = UA + µ11×N .

10: until convergence.

4 Robust PCA

So far we have presented algorithms for weighted learning and learning from

incomplete data. These algorithms assume that the weights are known in ad-

vance. However, in a real world environment, this is often not the case. Images

may contain various outliers (occlusions, reflections, etc.) whose exact posi-

tions in an image are not known. Since standard PCA is intrinsically sensitive

to non-Gaussian noise, such disturbances may considerably degrade the results
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of the visual learning and recognition.

In this section we will present a robust algorithm that has the capability of

detecting outliers in training images during eigenspace learning. These outliers

are then treated as missing pixels and the principal subspace is estimated from

inliers only, using the algorithms for learning from incomplete data presented

in the previous section.

If we have some additional knowledge about the object or scene, which is be-

ing modeled, or an algorithm for outlier detection tailored for that particular

problem, we can take advantage of it and use such an algorithm for detection

of outliers. However, if we have no additional knowledge we have to rely solely

on the information contained in the training images. We can detect outliers

by checking the consistency over the entire image sequence. The pixels, whose

reconstruction error significantly deviates from the distribution of the recon-

struction errors of all pixels, are treated as outliers. In other words, the outliers

are pixels with large reconstruction errors.

Based on this, our robust PCA approach is outlined in Algorithm 5. Usually,

only a few iterations (even only a single one) of this algorithm are sufficient

for convergence. At each iteration the data matrix X gets improved; many

outliers are detected and replaced with reconstructed values, which are better

approximations of the correct values. Therefore, in the subsequent iteration

additional outliers can be detected and reconstructed even better.

In the initial step of this algorithm standard PCA is performed on the entire

set of training images. The obtained initial subspace U′ is then used for the

detection of outliers. Since the outlying pixels are not consistent with other

pixels they usually appear as a high-frequency noise in a sequence of train-
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Algorithm 5 : RPCA – robust PCA

Input: data matrix X, number of principal axes to be estimated k.

Output: mean vector µ, eigenvectors U, eigenvalues λ, coefficients A.

1: repeat

2: Perform standard PCA on X and obtain µ′, U′ ∈ IRM×k′
and A′ ∈

IRk′×N .

3: Reconstruct the training images using µ′, U′ and A′ and calculate the

reconstruction error.

4: Detect outliers considering reconstruction errors.

5: Treat outliers as missing pixels and perform PCA using an algorithm

for learning from incomplete data (MPPCA) to obtain µ, U, λ, and A

from inliers only.

6: Reconstruct the training images using µ, U and A and replace missing

pixels in X with reconstructed values.

7: until the change in the outlier set is small.

ing pixels. Thus, they are modeled predominately with the eigenvectors, which

correspond to small eigenvalues, while the consistent pixels (signal) are mostly

modeled with the eigenvectors containing most of the variance. For that rea-

son, only the first k′ eigenvectors (k′ < k) are used for the detection of outliers.

The value of k′ and the threshold for outlier detection depend on the content

and the type of the training images and on the amount and the degree of

the deviation of outliers, as well as on the application’s goal. Therefore, these

values are application dependent and cannot be automatically determined in

general.

A potential drawback of this algorithm is the initial step, which still relies on

standard non-robust PCA. If the training set consists of a certain number of

18



images that contain a proportionally large number of outliers, they can distort

the principal subspace in such a way that the detection of outliers becomes

very unreliable. A solution to this problem is to divide each iteration of the

algorithm into two stages. In the first stage, the outlying images are detected

(images, which contain a large portion of outliers, and are not consistent with

other images) and then the initial eigenspace, which is used for detecting

outlying pixels, is detected from other images only. In this way, the obtained

initial eigenspace is less distorted by outliers. Consequently, the detection of

outlying pixels in all images in the second stage is more reliable.

5 Experimental results

In this work we described algorithms for weighted subspace learning, learning

from incomplete data and robust learning. We performed a number of ex-

periments in order to evaluate the proposed methods. In this section we will

present some of the results.

5.1 Weighted PCA

We applied the weighted PCA approach in a categorisation task. The goal

was to categorise images in one of 25 categories shown in Fig. 1. The category

members were obtained by morphing between 3-D models of two members

from the same basic level category.

The images were created by Dahl, Graf et al. [26,27] for conducting psy-

chophysical experiments. They investigated whether categorisation perfor-

mance depends systematically on topological transformation, i.e., on the po-
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Fig. 1. 25 categories used in psychophysical and computer vision categorisation

experiments [26,27].

sition within the morphing sequence [26]. Their conclusion was that more

typical objects were categorised faster than objects that were rated as less

typical category members. This is also obvious from the Fig. 2, which depicts

the typicality ratings (TRs) obtained in the typicality task and reaction times

(RTs) obtained in the word-matching task.
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Fig. 2. (a) Typicality rates, (b) reaction times in psychophysical experiments [26,27].

We applied the proposed temporally-weighted PCA learning algorithm and

set the weights according to the typicality ratings of the training images.

Since typicality ratings tend to be higher for objects that were perceived more

frequently [1], it seems reasonable to weight the training images to simulate

different numbers of observations of individual training images.

In the training stage we used 22 morphed training images per category. We

weighted these images and build for each category a two-dimensional subspace

(the average weights are plotted in Fig. 3(a) and correspond to the empirical

typicality ratings shown in Fig. 2(a)). In the categorisation stage we used the

20



same five images per category, which were used in the psychophysical exper-

iment. We projected every test image into each two-dimensional eigenspace.

For every image the smallest reconstruction error was obtained when the im-

age was projected into the eigenspace representing the correct category. We

were thus able to correctly categorise all test images only by considering the

reconstruction errors (i.e., distances to the subspaces). To also evaluate the

reliability of categorisation we calculated the uncertainty defined as the ratio

of the smallest to the second smallest reconstruction error, thus the ratio of

the distances to the closest and to the second closest subspace (plane).

The overall results (average uncertainty and mean reconstruction error over

all test images with the same morph distance) are plotted in Figs. 3(b,c). They

show that the categorisation of images which are similar to the training images

with higher weights (more typical images) is more reliable. These results nicely

resemble the RTs in the picture-name matching psychophysical experiment

with human subjects (Fig. 2(b)). They demonstrate that the weighted learning

approach tuned the subspace representations in such a way that more typical

category members can be categorised more reliably.
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Fig. 3. (a) Weights, (b) uncertainty, (c) reconstruction errors in computer vision

experiment.
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5.2 Learning from incomplete data

In this subsection we will present the results of the proposed methods for

learning from incomplete data. The goal was to learn a 9-D subspace repre-

sentation of the ‘duck’ object from 72 images from the COIL20 database (see

Fig. 4(a)). From each image we “erased” a randomly placed square, which

covered 20% of the image (Fig. 4(b)) and considered erased pixels as missing

pixels.

First we applied standard PCA algorithm on the training images with missing

pixels filled-in using the simple mean substitution (referred to as MS in the

figures). The missing pixels were replaced with the mean values calculated

from non-missing pixels only. Then we applied the proposed algorithms: Al-

gorithm 4, which iteratively reconstructs missing pixels (itRec), the modified

EM algorithm which calculates the principal subspace from non-missing pixels

only (EM ), and Algorithm 3, which assumes the smoothness prior. The latter

algorithm was tested in the circumstances when the smoothness prior held

(the training images were aligned in the sequential order – EMts) and when

this assumption was disadvantageous (the training images were aligned in a

random order – rndEMts).

Figs. 4(c–g) depict some training images with the missing pixels filled-in with

the reconstructed values, which were obtained using the methods described

above. One can observe that both proposed algorithms (itRec and EMts)

reconstructed missing squares significantly better than standard PCA on the

training images with mean-substituted missing pixels (MP). The modified

EM algorithm without smoothness prior (EM ) performed well too for the
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most part, however in some pixels it failed to correctly reconstruct the pixel

values to a large extent. As expected, when the training images were randomly

ordered, the incorrectly assumed smoothness prior significantly degraded the

results (rndEMts).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 4. (a) Nine complete images, (b) training images with missing squares, recon-

structed missing pixels using (c) MS, (d) itRec, (e) EM, (f) EMts and (g) rndEMts

approaches.

The same conclusions can be drawn also from Fig. 5, which presents quantita-

tive results. For comparison, we projected the original images without missing

pixels into the obtained eigenspaces. Ideally, we would obtain exactly the same

coefficients as we would by projecting the training images considering the non-

missing pixels only. Fig. 5(a) compares the obtained mean coefficient error,

i.e., the mean distance between the corresponding coefficient vectors, while

Fig. 5(b) plots the values of all 72 distances in increasing order. Fig. 5(c)

plots the recognition rate, i.e. how many times the projected complete images
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were the closest to the corresponding projected non-complete training images.

Fig. 5(d) indicates the similarity between the estimated principal axes and op-

timal ones, which were obtained by performing PCA on the complete training

images without missing pixels. For each of the first nine principal axes, the

dot product between the ideal and the estimated principal axis is depicted. All

these figures clearly indicate that the proposed methods for learning from in-

complete data perform well and considerably improve the results of the simple

mean-substitution approach.
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Fig. 5. Performance of learning algorithms: (a) mean coefficient error, (b) sorted

coefficient errors, (c) recognition rate, (d) dot products between corresponding es-

timated and optimal principal axes.

We also tested the performance of the algorithms with regard to the amount

of missing pixels present in the training images. We erased from 10% to 90% of

randomly selected spatially incoherent pixels in each image. All the algorithms

mentioned above were applied at each level of missing pixels.
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One such trial at 50% missing pixels is shown in Fig. 6. One complete and one

training image are shown as well as the same training image with reconstructed

missing pixels. Again, it is evident that itRec, EM, and EMts approaches

reconstruct missing pixels significantly better than MS and rndEMts.

(a) (b) (c) (d) (e) (f) (g)

Fig. 6. (a) One complete image, (b) training image containing 50% of missing pixels,

reconstructed missing pixels using (c) MS, (d) itRec, (e) EM, (f) EMts and (g)

rndEMts approaches.

Fig. 7 summarizes the results obtained at all levels of missing pixels. For each

level of missing pixels it plots the mean coefficient error, the mean squared

reconstruction error in missing pixels, the recognition rate and the mean dot

product between the corresponding estimated and optimal principal axes. All

the plots show that itRec, EM, and EMts perform very well when the amount

of missing pixels is 50% or less. Note that in this case the missing pixels are

spatially incoherent, which alleviates the problem to some extent. It can be

observed that the unconstrained EM-based approach EM breaks down when

we have 70% missing pixels. At this level, some of the missing pixels are

reconstructed very erratically, since no constraints are given. By contrast, if

the reconstructed values are constrained with the smoothness prior (EMts),

the best results are achieved. Of course, if this smoothness prior does not hold

true, this algorithm does not perform well (rndEMts). In such cases, the best

choice is iterative reconstruction of missing pixels (itRec).
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(a) (b)

(c) (d)

Fig. 7. Performance of learning algorithms with regard to amount of missing pixels

present in training images: (a) mean coefficient error, (b) mean squared reconstruc-

tion error in missing pixels, (c) recognition rate, (d) mean dot product between

corresponding estimated and optimal principal axes.

5.3 Robust PCA

The performance of the robust method we first tested on the images with

known ground truth is shown in Fig. 8. We captured 30 panoramic images

of size 100 × 100 in the faculty hall. Then, we synthetically applied gradual

illumination changes and nonlinear illumination changes (a shadow—the hor-

izontal “cloud”) to this set of images. In addition, we added as an outlier area,

a square on a randomly chosen position in every image. The goal was to learn

the background representation capturing the illumination variations (linear

and nonlinear) but discarding the outliers. Since these images are temporally

well correlated, we included the smoothness prior in the M-step of the EM
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algorithm for the calculation of the principal axes from incomplete data.

The results are depicted in Fig. 8. In the images reconstructed from the first

principal component obtained with the standard PCA, one can clearly observe

that the linear illumination changes are modeled, but not the nonlinear ones.

If the model consists of the first 8 principal axes produced by standard PCA,

then all illumination changes are captured in the reconstructions, however,

the model also contains the outliers (squares). On the other hand, using our

robust algorithm, one can observe from the reconstructions based on the first

8 principal axes, that all illumination changes are captured in the model, while

the outliers are not, which is exactly what we want to achieve.

(a )

(b)

(c)

(d)

Fig. 8. Comparison of our method with standard PCA. (a) Input images (every

fifth image from training set). (b) Reconstruction based on first principle axis (PA)

using standard PCA. (c) Reconstruction based on first 8 PA using standard PCA.

(d) Reconstruction based on first 8 PA using robust PCA.

We also calculated the mean absolute reconstruction error of the pixels be-

longing to the background and of the pixels that were occluded by the squares.

Ideally, the reconstruction error of the background pixels should be as small as

possible (meaning that the model fits the data well), while the reconstruction
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error of the occluded pixels should be large (meaning that the outlying pixels

do not fit to the model), which would lead to the efficient detection of outliers.

Table 1 compares the reconstruction errors with the errors obtained using the

optimal principal axes, which were estimated from the data without outliers

(ground truth). It is evident that the robust PCA outperforms the standard

one since the errors obtained with the proposed algorithm are much closer to

the optimal ones.

Table 1

Comparison of the reconstruction errors obtained using standard and robust PCA.

num. rec. error in

data method of PA background squares

ground truth standard PCA 8 1 2805

with outliers standard PCA 1 146 2601

with outliers standard PCA 8 21 540

with outliers robust PCA 8 6 2608

We also performed an experiment where we applied our method on the same

image sequence 7 of 506 images of size 120 × 160 pixels as De la Torre and

Black [20], who also proposed a method for robust learning of appearances

based on PCA. Our goal was to model the background, capturing the gradual

illumination changes, while excluding the people that appear in the images.

Some of the results are presented in Fig. 9. A subset of input images is depicted

in Figs. 9(a,f). One can observe in Figs. 9(b,g) that using standard non-robust

7 Images were obtained from http://www.salleurl.edu/∼ftorre/papers/rpca2.html.
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PCA approach the people are not excluded from the background and still

appear as ‘ghosts’. By contrast, the robust approach is able to detect the

outliers by most part, thus the robust model encompasses predominantly the

background and does not contain the people. As a consequence, the outliers

depicted as white pixels in Figs. 9(d,i) mainly correspond to the people and

extreme illumination changes.

For comparison, we also present the results of De la Torre and Black [20] in

Figs. 9(e,j). Their method produces similar results to ours. Also, the Equal

Error Rate of the two methods is similar. We manually labeled (segmented)

people that appear in the images presented in Fig. 9 and calculated EER. Our

algorithm produced 39,94% EER, while the algorithm from [20] produced

40,52%. This similarity is not surprising, since both algorithms rely on PCA

and detection of outliers based on reconstruction error. However, the approach

to the robust estimation of the PCA subspace is different. Their approach is

‘softer’ since it is based on robust M-estimation that iteratively and gradually

differentiates more reliable pixels from less reliable ones. Our algorithm is

’harder’ in this respect, since it detects and completely discards the detected

outliers and imputes their values with the values predicted by the model in

an EM fashion. Consequently, our algorithm is faster; in this experiment it

took less than 2 minutes to finish the task, while the algorithm of De la Torre

and Black [20] calculated the corresponding model in 21 minutes on a 3.2 GH

Pentium IV.
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(a)

(c)

(b)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 9. (a),(f) Original data from [20], (b),(g) standard PCA reconstruction, (c),(h)

our robust PCA reconstruction, (d),(i) outliers obtained by our method, (e),(j)

outliers obtained by [20].

6 Conclusion

Appearance-based modeling using PCA has been a popular approach to vi-

sual learning and recognition in recent years. A shortcoming of standard PCA
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approach is that it treats all pixels of an image equally. Also, all training im-

ages have equal influence on the estimation of principal axes. This is not well

suited for applications where some images or some parts of images should be

considered more or less important than others. In this work, we presented a

generalized PCA approach, which estimates principal axes and principal com-

ponents considering weighted pixels and images, enabling selective influence

of training images as well as pixels in individual images during the process of

learning. We also considered the special case of weighted learning, where some

pixels are totally unreliable and proposed methods for learning from incom-

plete data. Finally, we put the learning algorithms into a robust framework.

Since the images of objects and scenes are not always ideal and as such, they

may contain noise or occlusions, we proposed a robust method for eigenspace

learning, which detects outliers and estimates the principal subspace from the

consistent data only.

In this work the PCA approach was always used for processing grey level

images. It can be used, however, for processing images of other modalities as

well. Moreover, it can be applied to any set of vectors that are temporally

correlated. Instead of images, feature vectors obtained using various methods

for feature extraction, can be used. All the algorithms presented in this paper

can be applied to such data domains as well. In this way, a pure holistic view-

based approach can be extended by exploiting local geometric features and

structural information. Our current research has been taking this approach,

which has the potential to overcome many drawbacks of view-based methods

enabling efficient visual learning and recognition.
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