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Abstract— Interactive continuous learning is an important
characteristic of a cognitive agent that is supposed to operate
and evolve in an everchanging environment. In this paper we
present representations and mechanisms that are necessary for
continuous learning of visual concepts in dialogue with a tutor.
We present an approach for modelling beliefs stemming from
multiple modalities and we show how these beliefs are created
by processing visual and linguistic information and how they
are used for learning. We also present a system that exploits
these representations and mechanisms, and demonstrate these
principles in the case of learning about object colours and basic
shapes in dialogue with the tutor.

I. INTRODUCTION

An important characteristic of a cognitive system is the
ability to continuously acquire new knowledge. Communi-
cation with a human tutor should significantly facilitate such
incremental learning processes. In this paper we focus on
representations and mechanisms that enable such interactive
learning and present a system that was designed to acquire
visual concepts through interaction with a human.

Such systems typically have several sources of informa-
tion, vision and language being the most prominent ones.
Based on the processed modal information corresponding
beliefs are created that represent the robot’s interpretation of
the perceived environment. These beliefs rely on the partic-
ular representations of the perceived information in multiple
modalities. These representations along with the cross-modal
learning enable the robot to, based on interaction with
the environment and people, extend its current knowledge
by learning about the relationships between symbols and
features that arise from the interpretation of different modal-
ities. One modality may exploit information from another
to update its current representations, or several modalities
may be used together to form representations of a certain
concept. We focus here on the former type of interaction
between modalities and present the representations that are
used for continuous learning of basic visual concepts in a
dialogue with a human.

We demonstrate this approach on the robot George, which
is engaged in a dialogue with the human tutor. Fig. 1 depicts
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a typical setup and the scene observed by the robot1. The
main goal is to teach the robot about object properties
(colours and two basic shapes). George has built-in abilities
for visual processing and communication with a human, as
well as learning abilities, however it does not have any model
of object properties given in advance and therefore has to
continuously build them. The tutor can teach the robot about
object properties (e.g., ’H: This is a red thing.’), or the robot
can try to learn autonomously or ask the tutor for help when
necessary (e.g., ’G: Is the elongated thing red?’). Our aim
is that the learning process is efficient in terms of learning
progress, is not overly taxing with respect to tutor supervision
and is performed in a natural, user friendly way.

In this paper we present the methodologies that enable
such learning. First we present an approach for modelling
beliefs stemming from multiple modalities in §II. We then
show how these beliefs are used in dialogue processing in
§III, followed by the description of representations and the
learning process in vision in §IV. In §V we describe the
system we have developed and in §VI we present an example
of the scenario and the processing flow. We conclude the
paper with a discussion and some concluding remarks.

(a) Scenario setup. (b) Observed scene.

Fig. 1. Continuous interactive learning of visual properties.

II. MODELLING BELIEFS

High-level cognitive capabilities like dialogue operate on
high level (i.e. abstract) representations that collect informa-
tion from multiple modalities. Here we present an approach
that addresses (1) how these high-level representations can
be reliably generated from low-level sensory data, and (2)
how information arising from different modalities can be
efficiently fused into unified multi-modal structures.

The approach is based on a Bayesian framework, using
insights from multi-modal information fusion [1], [2]. We

1The robot can be seen in action in the video accessible at
http://cogx.eu/results/george.
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Fig. 2. Multi-modal information binding: belief construction (left) and application in a reference resolution task (right).

have implemented it as a specific subsystem called the binder
[3]. The binder is linked to all other subsystems. It serves as a
central hub for gathering information about entities currently
perceived in the environment. The information on the binder
is inherently probabilistic, so we can deal with varying levels
of noise and uncertainty.

Based on the available information, the binder seeks to
fuse the perceptual inputs arising from the various subsys-
tems, by checking whether their respective features correlate
with each other. The probability of these correlations are
encoded in a Bayesian network. This Bayesian network can,
for example, express a high compatibility between the haptic
feature “shape: cylindrical” and the visual feature “object:
mug” (since most mugs are cylindrical), but a very low
compatibility between “shape: cylindrical” and “object: ball”.

We call the resulting (amodal) information structure a
belief. The task of the binder is to decide which perceptual
inputs belong to the same real-world entity, and should
therefore be unified into a belief. The outcome of this process
is a joint probability distribution over possible beliefs. These
beliefs integrate the information included in the perceptual
inputs in a compact representation. They can therefore be
directly used by the deliberative processes for planning,
reasoning and learning.

In addition to the beliefs, there are two other central data
structures manipulated by the binder, proxies and unions
(see also Fig. 2(a)). A proxy is a uni-modal representation
of a given entity in the environment. Proxies are inserted
onto the binder by the various subarchitectures. They are
defined as a multivariate probabilistic distribution over a set
of features (discrete or continuous). A union is multi-modal
representation of an entity, constructed by merging one or
more proxies. Like proxies, unions are represented as a
multivariate probabilistic distribution over possible features.
They are essentially a transitional layer between proxies and
beliefs.

A belief is an amodal representation of an entity in the
environment. They are typically an abstraction over unions,
expressed in an amodal format. A belief encodes additional
information related to the specific situation and perspective
in which the belief was formed. This includes its spatio-

temporal frame (when and where and how an observation
was made), its epistemic status (for which agents the belief
holds, or is attributed), and a saliency value (a real-valued
measure of the prominency of the entity [4]). Beliefs are
indexed via a unique identifier, which allows us to keep
track of the whole development history of a particular belief.
Beliefs can also be connected with each other using relational
structures of arbitrary complexity.

To create beliefs, the binder decides for each pair of prox-
ies arising from distinct subsystems, whether they should be
bound into a single union, or fork into two separate unions.
The decision algorithm uses a technique from probabilistic
data fusion, called the Independent Likelihood Pool (ILP)
[5]. Using the ILP, we compute the likelihood of every
possible binding of proxies, and use this estimate as a basis
for constructing the beliefs. The multivariate probability
distribution contained in the belief is a linear function of
the feature distributions included in the proxies and the
correlations between these. A Bayesian network encodes
all possible feature correlations as conditional dependencies.
The (normalised) product of these correlations over the com-
plete feature set provides a useful estimate of the “internal
consistency” of the constructed belief.

The beliefs, being high-level symbolic representations
available for the whole cognitive architecture, provide a
unified model of the environment which can be efficiently
used when interacting with the human user.

III. SITUATED DIALOGUE

Situated dialogue provides one means for a robot to gain
more information about the environment. A robot can discuss
what it sees, and understands, with a human. Or it can ask
about what it is unclear about, or would like to know more
about.

That makes this kind of dialogue part of a larger activity.
The human and the robot are working together. They interact
to instruct, and to learn more. For that, they need to build
up a common ground in understanding each other and the
world.

Here we briefly discuss an approach that models dialogue
as a collaborative activity. It models what is being said, and



why. It enables the robot to understand why it was told
something, and what it needs to do with the information.

The approach is based on previous work by Stone &
Thomason [6] (S&T). In their model, an agent uses abductive
inference to construct an explanation of the possible intention
behind a communicative act. This intention directs how an
agent’s belief models need to be updated, and what needs to
be paid attention to next. This kind of inference is performed
both for comprehension, and for production.

The problem with S&T is that they rely on a symmetry
in communication: “What I say is how you understand it.”
This is untenable in human-robot interaction, particularly in a
setting where a robot is learning about the world. Therefore,
we have adapted and extended their approach to deal with
(a) the asymmetry between what has been observed fact, and
what has been asserted, and (b) clarification mechanisms, to
overcome breakdowns in understanding.

Algorithm 1 Continual collaborative acting

Σπ = ∅
loop {
Perception

e ← SENSE()
〈c′, i, Π〉 ← UNDERSTAND(r, Z(c)⊕ Σπ, e)
c ← VERIFIABLE-UPDATE(c′, i, Π)

Determination and Deliberation
c′ ← ACT-TACITLY(p, c)
m ← SELECT(p, c′)
〈i, Π〉 ← GENERATE(r, c′, m, Z(c)⊕ Σπ)

Action
ACT-PUBLICLY(a(i))
c ← VERIFIABLE-UPDATE(c′, i, Π)

}

Algorithm 1 presents the core of the resulting model, based
on S&T. In perception, the agent senses an event e. It tries
to understand it in terms of an intention i that results in
an update of the belief model from context c to c′, given
the communicative resources r, possible results Z(c) to use
them in context c, and whatever issues are still open to be
resolved Σπ . Given the inferred intention i and potential
update c′ the agent then tries to carry out this update, as a
verifiable update. To model this, we use a logical framework
of multi-agent beliefs (cf. §II) that includes a notion of
assertion [7]. An assertion is a proposition that still needs
to be verified. This verification can take various forms. In
George, we check whether a new piece of information can be
used to consistently update a belief model (consistency), or
to extend a modal model (learning) or weaken it (unlearning).
Any assertion still in need of verification ends up on Σπ .

In deliberation, a tacit action based on some private
information p is performed by the agent. In order to make the
effects c′ public, a public action m is selected and performed
as a realisation a(i) of the generated intention to act i.

An important aspect of linking dialogue with grounded
beliefs is reference resolution: how to connect linguistic
expressions such as “this box” or “the ball on the floor” to
the corresponding beliefs about entities in the environment.

The binder performs reference resolution using the same
core mechanisms as used for binding. A Bayesian network
specifies the correlations between the linguistic constraints of
the referring expressions and the belief features (particularly,
the entity saliency and associated categorical knowledge).
Resolution yields a probability distribution over alternative
referents (see Fig. 2(b) for an example). Abductive inference
then determines which resolution hypothesis to use, in the
context of establishing the best explanation. This is folded
together with any new information an utterance might pro-
vide, to yield an update of the robot’s current beliefs.

For example, consider an utterance like “This is yellow.”
First, the expression “this” must be resolved to a particular,
proximal entity in the environment. Resolution is performed
on the basis of the saliency measures. Second, the utterance
also provides new information about the entity, namely that
it is yellow. The robot’s beliefs get updated with this asserted
information. Dialogue processing does this by selecting the
belief about the referred-to entity, then incorporating the new
information. Indirectly, this acts as a trigger for learning.

In George, the dynamics of assertions on Σπ provide
the main drive for how learning and dialogue interact. The
vision subarchitecture can pose clarification requests to the
dialogue system. These requests are interpreted as tacit
actions (Algorithm 1), pushing an assertion onto Σπ . This
assertion may be a polar or an open statement. Then similarly
to resolving any breakdown in understanding the user, the
robot can decide to generate a clarification subdialogue. This
dialogue continues until the (original) assertion has been
verified, i.e. a proper answer has been found [8].

IV. LEARNING VISUAL CONCEPTS

In the two previous sections we discussed how the modal
information gathered from individual modalities is fused into
unified multi-modal structures and how they are used in
situated dialogue. In this section we will describe how the
modal information is captured and modelled in the visual
subarchitecture; how these models are initiated and how
they are being continuously updated and how they can be
queried to provide the abstracted information for higher-level
cognitive processing.

To efficiently store and generalise the observed infor-
mation, the visual concepts are represented as generative
models. These generative models take the form of probability
density functions (pdf) over the feature space, and are
constructed in an online fashion from new observations.
The continuous learning proceeds by extracting the visual
data in the form of highdimensional features (e.g., multiple
1D features relating to shape, texture, colour and intensity
of the observed object) and the online Kernel Density
Estimator (oKDE) [9] is used to estimate the pdf in this
high-dimensional feature space. The oKDE estimates the
probability density functions by a mixture of Gaussians,
is able to adapt using only a single data-point at a time,
automatically adjusts its complexity and does not assume
specific requirements on the target distribution. A particularly
important feature of the oKDE is that it allows adaptation



from the positive examples (learning) as well as negative
examples (unlearning) [10].

However, concepts such as colour red reside only within
a lower dimensional subspace spanned only by features that
relate to colour (and not texture or shape). Therefore, during
the learning, this subspace has to be identified to provide
the best performance. This is achieved by determining the
optimal subspace for a set of mutually exclusive concepts
(e.g., all colours, or all shapes). We assume that this cor-
responds to the subspace which minimises the overlap of
the corresponding distributions. The overlap between the
distributions is measured using the multivariate Hellinger
distance [9]. An example of the learnt models is shown in
Fig. 3.

Fig. 3. Example of the models estimated using the oKDE and the
feature selection algorithm. Note that some concepts are modelled by 3D
distributions (e.g., ”blue” which is denoted by ”Bl”), while others (e.g.,
”compact” which is denoted by ”Co”) is modelled by 1D distributions.

Therefore, during online operation, a multivariate genera-
tive model is continually maintained for each of the visual
concepts and for mutually exclusive sets of concepts the fea-
ture subspace is continually being determined. This feature
subspace is then used to construct a Bayesian classifier for
a set of mutually exclusive concepts, which can be used for
recognition of individual object properties.

However, since the system is operating in an online man-
ner, the closed-world assumption cannot be assumed; at every
step the system should also take into account the probability
that it has encountered a concept that has not been observed
before. Therefore, when constructing the Bayesian classifier,
an ”unknown model” has also to be considered besides the
learned models. It should account for a poor classification
when none of the learnt models supports the current obser-
vation strongly enough. We assume that the probability of
this event is uniformly distributed over the feature space. The
a priori probability of the ”unknown model” is assumed to
be non-stationary and decreases with increasing numbers of
observations; the more training samples the system observes,
the smaller is the probability that it will encounter something
novel.

Having built such a knowledge model and Bayesian clas-
sifier, the recognition is done by inspecting a posteriori
probability (AP) of individual concepts and unknown model;
in fact the AP distribution over the individual concepts is
packed in a vision proxy, which is sent to the binder and

serves as a basis for forming a belief about the observed
object as described in §II (see also Fig. 2(b)).

Furthermore, such a knowledge model is also appropriate
for detecting incompleteness in knowledge. It can be discov-
ered through inspection of the AP distribution. In particular,
we can distinguish two general cases. (1) In the first case the
observation can be best explained by the unknown model,
which indicates a gap in the knowledge; the observation
should most probably be modeled with a model that has not
yet been learned. A clarification request is issued that results
in an open question (e.g., ’Which colour is this?’). (2) In
the second case the AP of the model that best explains the
observation is low, which indicates that the classification is
very uncertain and that the current model cannot provide a
reliable result. A clarification request is issued that results
in a polar question (e.g., ’Is this red?’). In both cases,
after the tutor provides the answer, the system gets the
additional information, which allows it to improve the model
by learning or unlearning.

V. SYSTEM ARCHITECTURE

We have implemented the representations and mechanisms
described in the previous sections in the robot George. In
this section we describe the system architecture and the
individual components that are involved.

For implementation of the robot we employ a specific
architecture schema, which we call CAS (CoSy Architec-
ture Schema) [11]. The schema is essentially a distributed
working memory model, where representations are linked
within and across the working memories, and are updated
asynchronously and in parallel. The system is therefore
composed of several subarchitectures implementing different
functionalities and communicating through their working
memories. The George system is composed of three such
subarchitectures: the Binder SA, the Communications SA and
the Visual SA, as depicted in Fig. 4. Here, the components
of the visual subsystem could be further divided into three
distinct layers: the quantitative layer, the qualitative layer and
the mediative layer.

In the previous subsections we assumed that the modal
information is adequately captured and processed. Here we
briefly describe how the relevant visual information is de-
tected, extracted and converted in the form that is suitable for
processing in the higher level processes. This is the task of
the quantitative layer in the Visual SA. The quantitative layer
processes the visual scene as a whole and implements one or
more bottom-up visual attention mechanisms. A bottom-up
attention mechanism tries to identify regions in the scene that
might be interesting for further visual processing. George
currently has one such mechanism, which uses the stereo
3D point cloud provided by stereo reconstruction component
to extract the dominant planes and the things sticking out
from those planes. Those sticking-out parts form spherical
3D spaces of interest (SOIs). The SOI Analyzer component
validates the SOIs and, if deemed interesting (considering
SOI persistence, stability, size, etc.), upgrades them to proto-
objects adding information that is needed for the qualitative
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Fig. 4. Architecture of the George system.

processing, e. g. the object segmentation mask (the proto-
object is segmented by the Graph cut algorithm [12] using
the 3D and colour information provided by the stereo recon-
struction).

The qualitative layer implements the main functionalities
for recognition and learning of visual concepts that were
described in §IV. This layer processes each interesting scene
part (object) individually, focusing on qualitative properties.
After the extraction of the visual attributes (in the Visual
Learner-recognizer), like color and shape, the Object An-
alyzer upgrades the proto-objects to visual objects. Visual
objects encapsulate all the information available within the
Visual SA and are the final modal representations of the
perceived entities in the scene. Also, the learning of visual
attributes is performed in this layer.

The main purpose of the mediative layer is to exchange
information about the perceived entities with other modal-
ities. This is not done directly, but via the specialised a-
modal subarchitecture Binder SA, that actually creates and
maintains beliefs as described in §II. The Visual Mediator
component adapts and forwards the modal information about
objects to the binder (each visual object is represented by a
dedicated proxy in the binder). The component also monitors
beliefs for possible learning opportunities, which result in
modal learning actions. Another important functionality of
the mediator is to formulate and forward clarification motiva-
tions in the case of missing or ambiguous modal information.
Currently, these motivations are directly intercepted by the
Communication SA.

Given a clarification request, the Communication SA for-
mulates a dialogue goal given the information the system
needs to know and how that can be related to the current
dialogue and belief-context. Dialogue planning turns this
goal into a meaning representation that expresses the request

in context. This is then subsequently synthesised, typically as
a question about a certain object property. When it comes to
understanding, the Communication SA analyses an incoming
audio signal and creates a set of possible word sequences for
it. This is represented as a word lattice, with probabilities
indicating the likelihood that a certain word was heard, in
a particular sequence. The word lattice is then subsequently
parsed, and from the space of possible linguistic meaning
representations for the utterance, the contextually most ap-
propriate one is chosen [13]. Finally, dialogue interpretation
takes the selected linguistic meaning. This meaning is then
interpreted against a belief model, to understand the intention
behind the utterance. We model this is an operation on how
the system’s belief model is intended to be updated with the
information provided. In §VI below we provide more detail,
given an example.

VI. EXAMPLE SCENARIO

A. Scenario setup

The robot operates in a table-top scenario, which involves
a robot and a human tutor (see Fig. 1(a)). The robot is asked
to recognise and describe the objects in the scene (in terms
of their properties like colour and shape). The scene contains
a single object or several objects, with limited occlusion. The
human positions new objects on the table and removes the
objects from the table while being involved in a dialogue
with the robot. In the beginning the robot does not have
any representation of object properties, therefore it fails to
recognise the objects and has to learn. To begin with, the
tutor guides the learning process and teaches the robot about
the objects. After a while, the robot takes the initiative and
tries to detect its own ignorance and to learn autonomously,
or asks the tutor for assistance when necessary. The tutor can
supervise the learning process and correct the robot when
necessary; the robot is able to correct erroneously learned
representations. The robot establishes transparency and ver-
balises its knowledge and knowledge gaps. In a dialogue
with the tutor, the robot keeps extending and improving
the knowledge. The tutor can also ask questions about the
scene, and the robot is able to answer (and keeps giving
better and better answers). At the end, the representations
are rich enough for the robot to accomplish the task, that is,
to correctly describe the initial scene.

B. Example script

Two main types of learning are present in the George
scenario, which differ on where the motivation for a learning
update comes from. In tutor driven learning the learning
process is initiated by the human teacher, while in tutor
assisted learning, the learning step is triggered by the robot.

Tutor driven learning is suitable during the initial stages,
when the robot has to be given information, which is used
to reliably initiate (and extend) visual concepts. Consider a
scene with a single object present:

H: Do you know what this is?
G: No.
H: This is a red object.



G: Let me see. OK.
Since in the beginning, George doesn’t have any repre-
sentation of visual concepts, he can’t answer the question.
After he gets the information, he can first initiate and later
sequentially update the corresponding information.

After a number of such learning steps, the acquired models
become more reliable and can be used to reference the
objects. Therefore, there can be several objects in the scene,
as in Fig. 1, and George can talk about them:

H: What colour is the elongated object?
G: It is yellow.

When the models are reliable enough, George can take
the initiative and try to learn without being told to. In this
curiosity-driven learning George can pose a question to the
tutor, when he is able to detect the object in the scene,
but he is not certain about his recognition. As described
in §IV in such tutor-assisted learning there are two general
cases of detection of uncertainty and knowledge gaps. If the
robot cannot associate the detected object with any of the
previously learned models, it considers this as a gap in its
knowledge and asks the tutor to provide information:

R: Which colour is this object?
H: It is yellow.
R. OK.

The robot is now able to initialise the model for yellow
and, after the robot observes a few additional yellow objects,
which make the model of yellow reliable enough, it will be
able to recognise the yellow colour.

In the second case, the robot is able to associate the object
with a particular model, however the recognition is not very
reliable. Therefore, the robot asks the tutor for clarification:

R: Is this red?
H: No. This is orange.
R. OK.

After the robot receives the answer from the tutor, it corrects
(unlearns) the representation of the concept of red and
updates the representation of orange and makes these two
representations more reliable.

In such mixed initiative dialogue, George continuously
improves the representations and learns reliable models of
basic visual concepts. After a while George can success-
fully recognise the acquired concepts and provide reliable
answers:

H: Do you know what this is?
G: It is a blue object.
H: What shape is the green object?
G: It is elongated.

C. Processing flow

Here we describe the processing flow for one illustrative
example. We describe in more detail what happens after the
human places several objects in the scene (see Fig. 1) and
refers to the only elongated object in the scene (the yellow
tea box) by asserting ”H: The elongated object is yellow.”.

In the Visual SA the tea box is represented by a SOI on
the quantitative layer, a proto-object on the qualitative layer
and a visual object on the mediative layer. Let us assume

that the Visual Learner-recognizer has recognised the object
as being of elongated shape, but has completely failed to
recognise the colour. In the binder this results in a one-proxy
union with the binding features giving the highest probability
to the elongated shape, while the colour is considered to
be unknown. This union is referenced by the single robot’s
private belief in the belief model (Fig. 5, step 1).

The tutor’s utterance ’The elongated object is yellow’ is
processed by the Communication SA. Speech recognition
turns the audio signal into a set of possible sequences of
words, represented as a word lattice. The Communication
SA parses this word lattice incrementally, constructing a
representation of the utterance’s most likely linguistic mean-
ing in context [13]. We represent this meaning as a logical
form, an ontologically richly sorted relational structure.
Given this structure, the Communication SA establishes
which meaningful parts might be referring to objects in the
visual context. For each such part, the binder then computes
possible matches with unions present in the binding memory,
using phantom proxies (Fig. 5, step 2). These matches form a
set of reference hypotheses. The actual reference resolution
then takes place when we perform dialogue interpretation.
In this process, we use weighted abductive inference to
establish the intention behind the utterance – why something
was said, and how the provided information is to be used.
The proof with the lowest cost is chosen as the most likely
intention. Reference resolution is done in this larger context
of establishing the “best explanation.” Abduction opts for
that referential hypothesis which leads to the overall best
proof. The resulting proof provides us with an intention,
and a belief attributed to the tutor is constructed from the
meaning of the utterance. In our example, this attributed
belief restricts the shape to elongated, asserts the colour to
be yellow and references the union that includes the visual
proxy representing the yellow tea box.

In the Visual SA, the mediator intercepts the event of
adding the attributed belief. The colour assertion and the
absence of the colour restriction in the robot’s belief is
deemed as a learning opportunity (the mediator knows that
both beliefs reference the same binding union, hence the
same object). The mediator translates the asserted colour
information to an equivalent modal colour label and compiles
a learning task. The learner-recognizer uses the label and
the lower level visual features of the tea box to update its
yellow colour model. After the learning task is complete,
the mediator verifies the attributed belief, which changes its
epistemic status to shared (Fig. 5, step 3). The learning action
re-triggers the recognition. If the updated yellow colour
model is good enough, the colour information in the binder
and belief model is updated (Fig. 5, step 4).

A similar process also takes place in tutor assisted learning
when the robot initiates the learning process, based on an
unreliable recognition, e.g., by asking ”R: Is this red?”. In
this case, the need for assistance reflects in a robot’s private
belief that contains the assertion about the red colour and
references the union representing the object. Based on this
belief, the Communication SA synthesises the above ques-
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tion. When the robot receives a positive answer, it updates
the representation of red, using a very similar mechanism as
in the case of tutor driven learning.

VII. CONCLUSION

In this paper we presented representations and mechanisms
that are necessary for continuous learning of visual concepts
in dialogue with a tutor. An approach for modelling beliefs
stemming from multiple modalities was presented and it was
shown how these beliefs are created by processing visual and
linguistic information and how they are used for learning. We
also presented a system that exploits these representations
and mechanisms and demonstrated these principles in the
case of learning about object colours and basic shapes in a
dialogue with the tutor.

We have made several contributions at the level of indi-
vidual components (modelling beliefs, dialogue processing,
incremental learning), as well as at the system level (by
integrating the individual components in a coherent multi-
modal distributed asynchronous system). Such an integrated
robotic implementation enables system-wide research with
all its benefits (information provided by other components),
as well its problems and challenges (that do not occur
in simulated or isolated environments). We are, therefore,
now able to directly investigate the relations between the
individual components and analyse the performance of the

robot at the sub-system and system level. This will allow us
to set new requirements for individual components and to
adapt the components, which will result in a more advanced
and robust system.

The main goal was to set up a framework that would allow
the system to process, to fuse, and to use the information
from different modalities in a consistent and scalable way
on different levels of abstraction involving different kinds
of representations. This framework has been implemented in
the robot George, which is still limited in several respects;
it operates in a constrained environment, the set of visual
concepts that are being learned is relatively small, and
the mixed initiative dialogue is not yet matured. We have
been addressing these issues and the robot will gradually
become more and more competent. Furthermore, we also
plan to integrate other functionalities that have been under
development, like motivation and manipulation.

The presented system already exhibits several properties
that we would expect from a cognitive robot that is supposed
to learn in interaction with a human. As such, it forms a firm
basis for further development. Building on this system, our
final goal is to produce an autonomous robot that will be
able to efficiently learn and adapt to an everchanging world
by capturing and processing cross-modal information in an
interaction with the environment and other cognitive agents.
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