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Abstract. Motivated by psychologists’ findings that infants already at
the age of 4 months build a spatio-temporal representation of objects
and perceive objects as a single entity because of coherent motion, we
present a system which uses similar motion of interest points to guide
the focus of attention for learning object models on the fly. The novelty
of our system is to learn object models due to motion despite complex
interactions of multiple objects. Consistently moving interest points are
clustered, thus building the initial model of an object hypothesis. In the
subsequent frames similar clusters confirm the evidence of an object and
the model is extended by adding new interest points. In this way the sys-
tem handles changes of appearances and rotating objects to previously
unseen views. We represent objects in a star-shaped geometrical model
of interest points using a codebook. A graph based spatio-temporal rep-
resentation of multiple object hypotheses is maintained and thus the sys-
tem is able to explain the scene even if objects are totally occluded. This
representation is used for a consistent scene interpretation and to reason
about possible object locations to compute a prior for object recognition.
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1 Introduction

One of the rising challenges is to endow our environment with capabilities to
be sensitive and responsive to the presence of people. A necessary basic ability
for such an artificial cognitive system (be it an ambient intelligent system or
an autonomous robot) is to focus on the foreground and perceive objects as
unity in contrast to the background. We aim to build a cognitive agent, which
observes the environment and builds a spatio-temporal representation of object
hypotheses. Our approach is motivated by psychologists’ findings about infants
that have shown that besides Gestalt principles and occlusion, motion is one of
the most important cues to perceive object unity [1]. Gredebäck [2] and Spelke [3]
have shown that infants already at the age of four months build a spatio-temporal
representation of objects and accurately predict their reappearance after full
occlusion.

Typical vision systems integrate low-level visual cues in a hierarchical fashion
and extract relevant output from this bottom-up processing. Recent approaches
try to establish feedback loops and combine different vision methods at vari-
ous levels, but these methods also reach their limitations if dynamical scenes
get crowded and objects get partly or even totally occluded. Our system fuses
bottom-up visual processing with top-down reasoning to keep track of occluded
objects and to learn appearances of objects that continuously change due to
rotation or lighting. The system reasons about occlusion and hiding events and
maintains an object hypothesis graph that is updated according to the visual
input. We represent objects in a star-shaped geometrical model of interest points
using a codebook. In case of a plausible object hypothesis from motion segmen-
tation a learning event is triggered and the interest points of an existing object
are updated or a new model is created, respectively.

We tested our system with a scenario where a human moves different objects,
which interact several times, i.e., get occluded and reappear again. The goal is
that the system learns object hypotheses because of coherent motion of interest
points and keeps track of them even if they rotate to views which have never
been seen before, or during periods of full occlusion.

The paper is structured as follows: After an overview of related work in the
next section, the overall system is presented in Sec. 2. In Sec. 3, the object rep-
resentation including the object hypothesis graph and the star-shaped codebook
model are described. Then, the motion segmenter and the recognition component
are described in Sec. 4 and Sec. 5. Finally, reasoning and hypotheses selection is
described in Sec. 6 and results are shown in Sec. 7.

1.1 Related work

We present a system which integrates four basic functionalities, namely motion
segmentation, tracking, object recognition and reasoning. For further readings
about the first three we refer to the most relevant approaches described in [4], [5]
and [6]. In what follows, we will review the state of the art regarding systems
which include high level reasoning and occlusion handling.



There exist some occlusion reasoning systems for tracking or segmenting ob-
jects, mostly for traffic scenes or persons. The approaches in [7] and [8] use image
regions for occlusion reasoning. A region may consist of one or more objects, the
relative depth between objects is not considered. If occlusion happens, the sys-
tem merges the affected regions into a new region. On the other hand a region
is split, if the system is able to discriminate objects within this region. Elgam-
mal and Davis [9] use a maximum likelihood estimation to estimate the best
arrangement for people. To cope with the occlusion problem, Wu [10] proposes
a dynamic Bayesian network with an extra hidden layer and in [11] tracking
of multiple objects in dynamic scenes with long periods of occlusion is handled
by detecting the visibility state of the objects. In case of occlusion, the whole
assemble of objects is tracked.

Huang and Essa [12] present an approach for tracking a varying number of
objects through temporally and spatially significant occlusions. The method is
built on the idea of object permanence. They assume that a simple colour model
is sufficient to describe each object in a video sequence, therefore they do not
have to update their object models.

Bennett et al. [13] enhances tracking results of moving objects by reasoning
about spatio-temporal constraints. The reasoning engine resolves error, ambigu-
ity and occlusion to produce a most likely hypothesis, which is consistent with
global spatio-temporal continuity constraints. However, the whole system does
only bottom-up processing.

A way to incorporate knowledge into vision systems is to use a knowledge-
based approach, e.g. [14] for an aerial image understanding system, and [15] for
traffic monitoring applications. Matsuyama and Hwang [14] identified two types
of knowledge in an image understanding system, that is, knowledge about objects
and about analysis tools, and built a modular framework which integrates top-
down and bottom-up reasoning. The system extracts various scene descriptions,
and an evaluation function selects the most complex scene description from the
database. The evaluation function is trivial and trusts the low-level vision output
more than the reasoning output.

While reasoning in [15] is based on image regions using trajectories and
velocity information, our reasoning is based on more abstract object behaviour
to achieve a consistent scene interpretation even if objects are totally occluded.

2 System overview

Our system consists of four main parts (Fig. 1): the motion segmenter, the object
detector, the reasoning component and the knowledge-base. The central role
plays the reasoning component, which creates new object hypotheses triggered by
the motion segmenter, maintains the hypothesis graph, predicts object locations
to compute priors for the object detector and selects object hypotheses for a
consistent interpretation of the current image. For each object of a specific image
frame there exist several object hypotheses. Each hypothesis is linked to an
object of the previous as well as to an object of the next frame. The reasoner



Fig. 1. System overview, including the hypothesis graph (left), the structure of the
system and the communication between the different components (right).

either creates new object hypotheses of unseen motion clusters, or it creates
object hypotheses including a copy of the object models of the last frames, or
it creates object hypotheses with an updated model (see different nodes on the
left in Fig. 1).

The result until here is an over-complete set of object hypotheses, that ex-
plains the same area of the image. To get a consistent interpretation of a par-
ticular frame a minimum description length (MDL) based selection framework
is used and the best hypotheses mask weaker ones.

Before going into details with the different components, we describe the graph
based representation of the object hypotheses.

3 Object representation

In contrast to classical object recognisers, which have an optimised model to
recognise an object in one image, our approach works on image sequences and
uses the history of the object hypotheses for modelling the object as well as for
predicting the location in the next image. The object model is generated online
and stored in the object hypothesis graph in a distributed manner.

3.1 Object hypothesis graph

The object hypothesis graph (see Fig. 1, left) is maintained by the reasoning
component and stores all object locations and the models of the according views
of all previous images up to the current frame. We use a star-shaped geometrical
representation depicted in Fig. 2(c). Depending on the results of the object
detector and the object segmenter the reasoner creates a new object hypothesis,
i.e., it stores the interest points within a segmented region with respect to the
centre of the region or the interest points are aligned with the stored model
of the previous frame using the current detection result. Thus for each frame
we have object hypotheses which are linked to the parent hypotheses of the



(a) (b) (c)

Fig. 2. Fig. 2(a) shows detected interest points and Fig. 2(b) the codebook represen-
tation, cluster means and occurrences (interest points). In Fig. 2(c) the star-shaped
object representation is sketched.

previous frame and if there is a supporting segmentation for a detection result
the current occurrences, i.e., the interest points within the segmented region, are
stored. These occurrences are then used to generate a “small” model using the
immediate previous frames optimised for tracking or – in case the object is lost –
all previously seen occurrences are used to create a compact model optimised for
object recognition. As proposed by Lowe [16] the Difference-of-Gaussian (DoG)
operator and SIFT are used for detection and description of interest points.

3.2 Building compact object models

Our object model for recognition is inspired by the work of Leibe et al. [5],
who proposed to build up a vocabulary (“codebook”, see Fig. 2(a) and 2(b))
of interest points and to compose a geometric structure out of this vocabulary.
We extended this approach with a geometric pruning algorithm to get a more
compact model and thus speed up object detection.

The first step is to create a codebook for each object. Therefore links of
current object hypotheses are traced back to the parent objects and the accord-
ing descriptors of the occurrences are clustered following the RNN-algorithm as
described in [5]. The RNN-algorithm is an agglomerative clustering algorithm
which successively merges local descriptors until a cut-off threshold is reached.
Thus this algorithm automatically determines the number of clusters while en-
suring the cluster compactness. The next step is to assign the geometric locations
to each cluster mean. Hence each codebook entry can vote for several object lo-
cations described in detail in Sec. 5. We use sequences of images thus a lot of
similar occurrences build a codebook entry which offers the possibility for a sta-
tistical analysis to prune unreliable occurrences. In a post processing step the
codebook is optimised to speed up the object detection, therefore we apply a
geometric hashing for each codebook entry, in which hash bins must have at least
two entries otherwise the according occurrence is deleted. Then the codebook is
examined and all entries with less than two occurrences are deleted.

Summarised, separate codebooks are created for each object including occur-
rences of at least 3 frames for tracking and occurrences of all previous frames if
an object gets lost. Clustering and geometric pruning is used to build a compact



object model including only reliable occurrences. These object models are then
used for recognition described in Sec. 5.

4 Motion segmentation

The whole system is triggered by the motion segmentation component. We do
not rely on a perfect segmentation of moving objects, but rather take care to
achieve robustness later due to the cognitive component described in Sec. 6.
Consequently, we just use a fast clustering of interest points depending on their
affine motion. Our approach is inspired by the work of Pundlik et al. [4], who
presented a real-time incremental approach to motion segmentation operating
on sparse feature points. In contrast to Pundlik, who randomly selects interest
points and uses an incremental growing algorithm, we use a 2-dimensional his-
togram of the length of the motion vectors and the motion direction to obtain
good initial pre-clusters. Then a splitting algorithm and an outlier detection
follows and theses clusters are merged depending on similar affine motion.

(a) (b) (c)

Fig. 3. Grouped motion vectors of interest points are shown with identical colours;
different colours mean different clusters. Each subfigure depicts the result of different
processing steps. Fig. 3(a) shows the result of grouping according to similar length and
direction of the motion vectors using a 2-dimensional histogram. Fig. 3(b) is the result
after examination of the neighbouring motion vectors using a delaunay triangulation
and after affine outlier detection. In Fig. 3(c) the result of Fig. 3(b) is used to initialise
a merging algorithm which combines clusters depending on their affine motion.

In detail: the first step is to examine the 2D-motion histogram. Therefore
we search for all local maxima, that is we look for histogram bins which are
surrounded by bins with a lower number of entries. Starting from the local
maxima all neighbouring bins are clustered until a saddle bin is found. The
result can be seen in Fig. 3(a). The next step is to split large clusters in case
of intersecting convex hulls of other clusters. Therefore we use a delaunay tree
to create a location neighbourhood graph of all interest points detected in the
image. The splitting criterion prohibits intersections of two clusters and thus



substitutes a cluster with two new ones if they have no connection within the
delaunay tree. After an affine outlier detection using a Least Median of Squares
implementation, publicly available at FORTH [17] (see Fig. 3(b)), the clusters
are again merged if the affine error is lower than the maximal error would be if
they stayed separated. Thus the merging criterion results in

Cm = Ci ∪ Cj for em < max(ei, ej) (1)

In (1), Ci and Cj are two clusters, which are tested for similar affine motion
and Cm denotes the merged cluster. e stands for the affine errors of the clusters.
Additionally we can adjust a chaining parameter to cluster only features which
are tracked for more than two frames and are thus considered as more stable.

Fig. 3 shows the results of all three main steps. It can be seen that the
three outliers on the hand are filtered as well as the mismatch on the keypad
of the telephone. The final motion clusters are handed over to the reasoning
component which initialises a new object hypothesis or adds the features to an
existing object. This is explained in detail in Sec. 6, after the object recogniser
is described.

5 Object detection

The same interest points (DoG-operator and SIFT-descriptor [16]) used for the
motion segmentation just described, are also used for object recognition. The
detected interest points are matched with the codebook and activated codebook
entries vote for an object centre.

Consistent votes are accumulated in the Hough accumulator array. We use
a three dimensional space where occurrences of activated codebook entries vote
for an object location xv = (xv, yv) and a scale sv:

sv =
si

socc
, (2)

xv = Rxoccsv + xi. (3)

In (2), si is the scale of the detected interest point in the current image and socc

denotes the scale of the occurrence in the learning image, respectively. In (3) xi

is the location of the detected interest point in the current image, xocc denotes
the location of the object centre with respect to an occurrence of the model
and R stands for the matrix that describes the rotation from model to image
orientation of the interest point.

Once all matched interest points have voted, the Hough accumulator array
is used to find the most promising object hypotheses. The probabilistic votes in
each Hough bin i are summed up and – starting with the best hypothesis, i.e.,
the largest bin – the object location is refined. This is done in a mean shift like
procedure, for which the neighbouring bins are examined for contributing votes.
This handles the typical boundary effect of Hough voting schemas.

The result of the mean shift refinement is a cluster of interest points, that
consistently vote for an object location. This cluster is used to compute an affine



homography Haff , for which we use the Least Median of Squares implementation
already mentioned in Sec. 4. Haff is further used to project the model boundary
to the current frame. The projected boundary is not only used for visualisation
but also for interest point statistics and for computation of the confidence value

c(o|m, ft) = −κ1 + (1− κ2) · nmatched

ndetected
+ κ2 ·

smatched

ndetected
(4)

of an object o for a given frame ft and an object model m. nmatched are the
matched interest points and ndetected are the number of the detected interest
points located within the boundary projected to the current frame. smatched is
the sum of the weights

w = pmpocc =
1

nm · nocc
(5)

of all matched interest points with pm and pocc denoting the probabilities of
the match and the occurrence in the model, respectively. nocc is the number of
occurrences of the specific object model of the activated codebook entry and
nm is the number of activated entries of the interest point. κ1 and κ2 are two
constants which weight the different factors.

6 Reasoning and hypotheses selection

The central role plays the reasoning component, it predicts object locations
both for the case of tracking and for the case of total occlusion. It creates new
object models or updates existing models depending on coherent segmentation
and detection results and it selects objects from an over-complete set to get
a consistent scene interpretation. The following sections describe the different
functionalities of the reasoner starting with the occlusion analysis.

6.1 Occlusion analysis

We aim to get a consistent interpretation of an image sequence thus it is neces-
sary to predict objects even if they are totally occluded. Therefore we developed
an event based occlusion analysis schema. If an object gets lost the past, the cur-
rent and the predicted object locations in the future are examined for possible
occluders. Therefore for each location the overlap of the projected object bound-
ary with the other visible object hypotheses is computed and if they overlap the
visible object gets an occlusion vote. The voting is done for all past and future
object locations which are within a maximum distance of half the object size.
After the visible objects accumulated the votes, the ID of the occluded object
is assigned to the visible one with the most votes and to all other which got
more than 80% of the maximum. It turned out that this voting schema is more
reliable than only looking at the position of disappearance because in case of
partial occlusion our model updating algorithm tends to shrink the estimated
object boundary to the visible part of the object.

Fig. 4 shows an occlusion event, the correct depth ordering which is estimated
from the confidence value (cp. Sec. 6.2), and the link of an occluded object to
the occluder (indicated by an object ID within the brackets).



(a) (b) (c) (d)

Fig. 4. Occlusion event including correct depth ordering and an occluded object linked
to the occluder

6.2 Confidence value for tracking using a location and a scale prior

For tracking the objects we use a constant velocity assumption therefore the
affine homography Hinc between two frames is computed for each object. Then
the assumed location and scale is computed for objects of the current frame and
the confidence value is extended to

ctrack(o|m, ft) = c(o|m, ft) + κ3 · log p(oft
|oft−x

) + κ4 · log s(oft
|oft−x

) (6)

where p(oft
|oft−x

) and s(oft
|oft−x

) stand for the location and the scale prior
and κ3 and κ4 are further constants to weight the priors. We model the priors
using a Gaussian around the predicted location and the last scale. In case of
occlusion the location prior is extended and surrounds the whole boundary of
the occluder. Thus reappearing objects are accepted near the occluder and at
the last seen location (see Fig. 5). Then the objects are sorted according to the
tracking confidence value and added to the hypothesis tree.

Fig. 5. Probability map for one specific object computed using the predicted location
and the result of the occlusion analysis.



6.3 Maintenance of the object models

The next step is to update existing object hypotheses. Therefore we compute an
overlap matrix which describes the support of segmented regions and detected
object hypotheses. We define the support

supporti,j =
Aseg ∩Adet

Aseg ∪Adet
. (7)

where the support of a segmented region rseg for a detected object hypothesis
odet is the ratio of the intersection and the union of the segmented area Aseg and
the area of the detected object hypothesis Adet. For our experiments we used
a winner takes all updating strategy, meaning that the detection result with
the highest tracking confidence value is updated if the support is larger than a
threshold tupdate. Additionally we use a second threshold tnew for creating a new
object hypothesis. If a segmented region does not support any detection result
more than tnew a new hypothesis is created. Depending on the detection results
and these two thresholds an over-complete set of object hypotheses is created
from which hypotheses explaining the scene in a consistent way are selected.

6.4 Hypotheses selection

Our hypotheses selection framework was introduced in [18] and adapted by [5].
The idea is that the same data set cannot be occupied by more than one ob-
ject and that the models cannot be fitted sequentially. Thus an over-complete
set of hypotheses is generated and the best subset is chosen using a minimum
description length criterion.

In our case the data set consists of the interest points and each interest point
can only be assigned to one object model. Hence, overlapping models compete
for interest points which is represented by the interaction costs qij . In contrast
qii represents the merit term of an object hypothesis. Finding the optimal set of
models leads to a Quadratic Boolean Problem (QBP)

max
n

nTQn , Q =

 q11 · · · q1N

...
. . .

...
qN1 · · · qNN

 (8)

where n= [n1, n2, · · · , nN ] stands for the indicator vector with ni = 1 if an object
hypothesis is selected and ni = 0 otherwise. Q is the interaction matrix with the
diagonal elements qii = ctrack(o|m, ft) and the off-diagonal elements

qij = − 1
no,weak

· ((1− κ2) · noverlap + κ2 · soverlap) (9)

where no,weak is the number of interest points within the projected boundary
to the current frame of the weaker hypothesis, i.e. with the lower confidence
value, noverlap stands for the number of interest points which are shared by both
objects and soverlap is the sum of the weights of all shared interest points (cp.
Eq. 5).



6.5 Pruning of weak object hypotheses

In case of a weak support of a segmentation and a detection our system generates
additional object hypotheses. Continually extending the object hypothesis graph
would lead to an intraceable system. Thus we introduced a lifetime of object
hypotheses and delete models if they are not continuously updated. Motivated
by the human brain, which has an exponential forgetting curve – discovered by
Hermann Ebbinghaus in 1885 – we introduced an exponential lifetime

tlife =
nseg

nlife
· e

nseg
coblivion . (10)

where nseg is the number of supports of a segmentation for an object, nlife

is the number of frames since the object hypothesis was created and coblivion

stands for a constant to care for inaction time. Thus object hypotheses are only
maintained if tlife > 1, otherwise the object model is deleted. This leads to a
linear characteristics at the time when the hypothesis is created. If the object is
supported by a segmentation more often it will be stored almost forever.

7 Results

We processed six video sequences to test our system. In the following, we present
three sequences, which show the strengths as well as the weaknesses. The system
has to detect object hypotheses because of consistent moving interest points, in-
terpret the sequence correctly including hypotheses for totally occluded objects
and build object models with all seen views. In our first video sequence, called
Sorting the Shopping Basket we arranged typical household articles in a crowded
manner in a box. Then a person empties the box, resorts the articles and places
them into the box again. The sequence shows a lot of complex interactions and
it is taken at a low framerate (objects move more than 40 pixels between two
frames) to show that our system can handle motion blur and that it is not
bounded to a strict tracking assumption, but rather selects the best interpreta-
tion which is currently available. Fig. 6 shows selected frames of the sequence.
Currently available object models are depicted with bounding boxes and the
according IDs and confidence values are displayed at the upper left area of each
image. In Fig. 6(a) the first object is grasped and because of the motion an object
hypothesis with ID 1 is generated. The next Fig. 6(b) shows the second object
(ID 5) which moves behind the first object. Correct occlusion assignment and
the last detected location are indicated with the ID within brackets under the
occluder ID and with a coloured dot surrounded by a grey circle. During com-
plex actions sometimes “hallucinated” object hypotheses are created (Fig. 6(d)
object ID 45) which are not confirmed and thus deleted in the following frames.
In Fig. 6(e) the object with ID 5 re-appears. In this frame all eight correctly
learned object models are listed in the upper left area of the image. After some
interactions shown in Fig. 6(f), 6(g) and 6(h) the sorted box with correct oc-
clusion assignment is depicted in Fig. 6(i). Only the chocolate bar (ID 27) is



(a) Frame #78 (b) Frame #150 (c) Frame #304

(d) Frame #563 (e) Frame #611 (f) Frame #634

(g) Frame #640 (h) Frame #707 (i) Frame #902

Fig. 6. Selected frames of the video named Sorting the Shopping Basket, indicating
the complex interactions. Bounding boxes of learned objects are shown with different
colours and the according IDs and confidence values of all currently available models
are depicted at the upper left area of each image. If an object is lost the last position
is depicted with a coloured dot surrounded by a grey circle and the ID of the occluded
object is displayed under the occluder ID within brackets.

not recognised again, because of a too drastic change of the size and a too large
rotation while it was occluded (i.e., no model was generated of this view before).

The second sequence depicted in Fig. 7 contains three foreground objects.
One of the objects (ID 13) is rotated to different views. Then this object moves
behind the other two and – triggered by the occlusion event – a model of all views,
which have been shown before, is computed. During full occlusion the object
is rotated and re-appears with a view shown at the beginning. It is correctly
recognised again in Frame #850 (Fig. 7(f)).

In Fig. 8 another sequence with household articles is shown. Despite the
correctly learned object models two errors occurred. The first one is that the
model of the xerox box (ID 27) has disappeared. This object hypothesis is not
confirmed often enough during tracking and thus it has been deleted due to
our forgetting curve. The second error is that the occluded object with ID 5 is
not linked to the occluder 37. Because of a rotation in depth during occlusion



(a) Frame #578 (b) Frame #640 (c) Frame #676

(d) Frame #772 (e) Frame #810 (f) Frame #850

Fig. 7. Part of a 900 frames long video which indicates the learning of an object model
including the history of the object. The model of object 13 is learned while rotating
to completely different views. Then it is moved behind object 3 and 9. During full
occlusion the object is rotated and appears again with a view learned at the beginning.

(a) Frame #1820 (b) Frame #2175 (c) Frame #2460

Fig. 8. Three images of a 2590 frames long video are depicted showing two possible
errors.

the prediction was wrong and thus object 5 did not get in contact with the
occluder 37.

8 Conclusion

In this paper we presented a system that uses an affine model based motion
clustering of interest points to create object hypotheses. If the hypotheses are
confirmed in the following frames more complex object models are created. An
occlusion reasoning framework is used to track objects even under full occlusion.
This leads to an over-complete set of object hypotheses. We use an MDL-based
model selection framework to select a consistent interpretation for each image
frame. The result of our approach is a set of object models created from all previ-
ously seen frames and the assumed location for each object including completely
occluded objects.
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