
BLORT - The Blocks World Robotic Vision Toolbox

T. Mörwald, J. Prankl, A. Richtsfeld, M. Zillich and M. Vincze

Abstract— The vision and robotics communities have de-
veloped a large number of increasingly successful methods
for tracking, recognising and on-line learning of objects, all
of which have their particular strengths and weaknesses. A
researcher aiming to provide a robot with the ability to handle
objects will typically have to pick amongst these and engineer
a system that works for her particular setting. The work
presented in this paper aims to provide a toolbox to simplify
this task and to allow handling of diverse scenarios, though
of course we have our own particular limitations: The toolbox
is aimed at robotics research and as such we have in mind
objects typically of interest for robotic manipulation scenarios,
e.g. mugs, boxes and packaging of various sorts. We are not
aiming to cover articulated objects (such as walking humans),
highly irregular objects (such as potted plants) or deformable
objects (such as cables). The system does not require specialised
hardware and simply uses a single camera allowing usage on
about any robot. The toolbox integrates state-of-the art methods
for detection and learning of novel objects, and recognition and
tracking of learned models. Integration is currently done via our
own modular robotics framework, but of course the libraries
making up the modules can also be separately integrated into
own projects.

I. INTRODUCTION

Even with the large pool of powerful methods for learning,
recognition and tracking of objects available today, putting
together a system that “simply works” can be a time-
consuming task. Objects need to be recognised and tracked,
and learning of models should not be too cumbersome, if
possible on-line and require no extra hardware besides the
robot itself. Simple as well as complex scenes should be
covered, with no need to either place markers on objects
or paint them in bright colours. A sufficiently large number
of objects should be detectable and trackable in real-time,
with no constraints on object type or shape. And if the
task requires manipulation full 6D object pose and shape
are required.

Recent increasingly successful approaches in object recog-
nition and tracking are typically based on some variant
of interest points and a combination of offline training
and online recognition. Training often requires either hand-
labelling of images or presentation of objects on specialised
equipment like turn tables, which is sometimes not desirable.
Approaches for learning by showing use e.g. optical flow
for segmenting the object of interest from the background
and then train an interest points-based model, accumulating
new interest points as the object is rotated. These approaches
however typically create a “sparse” 3D model consisting

T. Mörwald, J. Prankl, A. Richtsfeld, M. Zillich and M. Vincze are with
the Vienna University of Technology, Vienna, Austria, email: [moerwald,
prankl, arichtsfeld, zillich, vincze]@acin.tuwien.ac.at

of several interest points rather than a model of the actual
physical surface. Calculating points of contact for grasping or
touching an object however requires a dense surface model
such as a triangle mesh. Furthermore not all methods are
amenable to real-time tracking, which is needed as soon as
the robot or a human handles objects and the scene becomes
dynamic.

Fig. 1. Scene and recognised/tracked objects

With BLORT, the blocks world robotic vision toolbox, we
combine state-of-the-art methods for learning, recognising
and tracking objects modelled as dense triangle meshes.
Fig. 1 shows an example of a scene containing several
(partly occluded) objects and their overlaid 3D models after
recognition. Specifically we employ a combination of edge-
based detection of basic geometric shapes, fast edge-based
monte carlo particle filter tracking and SIFT-based recogni-
tion. The rationale behind this particular choice of methods is
twofold. First we want to enable human tutor driven learning-
by-showing as well as completely automatic on-line model
acquisition by the robot. For the latter we have to make
simplifying assumptions to allow segmentation of unknown
objects and it is here where blocks world enters: detection
of novel objects is limited to simple geometric shapes,
namely cuboids and cylinders. While this is admittedly a
considerable limitation, it allows experiments where a robot
interacts with a (simple) scene fully autonomously. More
complex objects can be acquired in a learning-by-showing
manner but require known 3D triangle mesh models to
start with. Second, using edge-based methods covers both
textured and untextured objects. Tracking will be improved
by available surface texture but works satisfactorily without.
SIFT-based recognition obviously requires texture but can be
substituted with the edge-based detection.

As a motivating example let us consider a scenario where a
human tutor shows a new object to the robot within a learning
setup that is intended to make things easy initially, i.e. the
tutor basically puts the object on a table and says something
like “This is a tea box.” The system detects this new object



Vision Subarchitecture

Language
S

p
a

ti
a

l 
R

e
a

s
o

n
in

g

Working
Memory

Detection

Recognition

Tracking

Learning

Planning
N

a
v

ig
a

ti
o

n

shape primitive + pose

shape + pose

shape + SIFT

shape + pose

Geom Modeller

complex shape + pose

Video

Fig. 2. System overview: interplay between detection, tracking and
recognition

and starts tracking it. The tutor then picks up the object
and shows it from different sides while the system learns
the different object views. Alternatively the robot could go
round the object itself, e.g. using an arm-mounted camera.
The system is then able to recognise the learned object and
re-initialise the tracker in more general scenes, with all the
background clutter and varying lighting that are typical of
robotic scenarios.

Fig. 2 shows the interplay between detection, tracking and
recognition within our robotics framework, where other parts
of the system concerned with localisation, planning, language
understanding etc. are only hinted at. The framework is
based on a software architecture toolkit [1] which handles
issues like threading, lower level drivers and communication
via shared working memories. Tracking starts when a new
object is detected automatically or a model is supplied
explicitly. While the object is tracked, initially only based on
its wireframe model, surface texture and SIFT features are
collected and mapped onto the object surface. This builds
up a SIFT-based model that is used later to re-initialise the
tracker.

The remainder of this paper is organised as follows. After
reviewing related work in Section II we describe detection
of novel objects in Section III, followed by tracking in
Section IV and recognition in Section V. Experimental
evaluation is presented in Section VI followed by conclusion
and outlook in Section VII. Note that size constraints prevent
us from going into the details of the involved methods and
the reader is referred to referenced previous work. The focus
of this paper lies on showing the interplay between methods.

II. RELATED WORK

There are many approaches for obtaining 3D object mod-
els. The simplest option would be to just download a model
from the rich selection on Google 3D Warehouse, if the
particular object happens to be modelled (which is quite
likely for things like coke cans or bottles). Professional
solutions for building 3D models from multiple images such
as 2D3 R© exist but tend to be costly. Systems like the low-
cost laser scanning system by Winkelbach et al. [2] or the
projected-light system by Rusinkiewicz et al [3] allow quick

and easy capture of full 3D models but require special
hardware setups.

A very convenient way to construct models is by simply
showing an object and adding model information as it is
rotated. The system by Brown et al. [4] builds 3D wireframe
models of simple geometric objects. The user however has
to initialise a 2D wireframe model by selecting image lines
and model acquisition takes around 5 minutes. Vacchetti et
al. [5] track a 3D CAD model (which has to be specified in
advance) and augment it with distinctive features, first from
user supplied keyframes in a training phase and also online
while tracking. Only a very rough 3D model (e.g. just an
ellipsoid) is needed for the system by Özuysal et al. [6],
which learns object models for tracking-by-detection by
“harvesting” features. The user aligns the model with the first
image where keypoints based on randomised tree classifiers
are learned and mapped to the 3D model. New features
are successively added while the object is tracked using the
available features. In [7] the same authors use marking of
the outline of a planar object in a single training image
in a similar tracking-by-detection approach. Tracking-by-
detection has the advantage that lost tracks are recovered
immediately. The models are however somewhat costly in
terms of memory (in the order of hundred MB) which
quickly becomes an issue even on modern hardware. Grabner
et al. [8] use a similar approach of accumulating keypoint
classifiers while tracking. Only a region of interest near the
object center is needed for initialisation. The approach re-
quires no explicit 3D model but also assumes planar objects.
Roth et al. [9] use background subtraction to initialise an
MSER-based tracker and incrementally learn a PCA model
of the object while it is tracked. These models however
do not represent 3D shape as would be needed by typical
robotics tasks. Riemenschneider et al. [10] take a similar
approach of tracking based on MSER but learn a model
based on a SIFT codebook. Again however the models do
not represent 3D shape. Pan et al.’s ProFORMA system
[11] allows to interactively build high quality dense triangle
meshes by reconstructing and tracking a model while it is
rotated by the viewer. No constraints are placed on the type
of object to be modelled other than it be textured.

Gordon and Lowe [12] build a 3D model composed of
SIFT descriptors in an offline training phase by performing
structure and motion estimation. The online phase then
uses RANSAC to estimate 6D pose from 2D-3D correspon-
dences. The system though is geared at augmented reality
applications and the scene is not segmented into objects.
Collet et al. [13] extend the above for application in the
robotics domain, specifically by augmenting RANSAC with
a Mean-Shift clustering step to allow recognition of multiple
instances of the same object. The system does require manual
segmentation of the object in each training image though.
Furthermore the obtained sparse 3D points model has to be
manually aligned with a CAD model of the object, so the
whole procedure requires considerable user intervention.

Tracking of 3D object models has a long history (see
Lepetit and Fua [14] for an overview) and we are here



mostly concerned with approaches that use surface texture
or combine it with model geometry. Masson et al. [15] use
point features from surface texture in conjunction with edges
to increase robustness especially with respect to occlusion.
Rosten and Drummond [16] present a similar approach
fusing FAST features with edges. Both of the above treat
edges and texture point features independently and fuse them
explicitly. Klein and Murray [17] take advantage of the large
processing power of recent GPUs for tracking a wire-frame
model using a particle filter. Murphy and Trivedi [18] follow
a similar approach but use surface texture by computing the
cross-correlation of pixel patches.

Detection of geometric shapes based on perceptual group-
ing of edges is a well known topic in computer vision with
an abundance of literature since the eighties. Approaches
such as [19], [20] and [21] use groups of edge fragments
to detect learned classes of shapes and show impressive
results on databases. Our models differ in that they are only
topological models of generic views of basic shapes such
as an arrangement of lines and ellipses forming a cylinder,
where the limited number of these shapes allows us to ignore
learning. Dickinson and Metaxas [22] combine qualitative
and quantitative object models to detect and track ten object
primitives (box, cylinder, tapered cylinder etc). That system
is still brittle in the presence of texture and clutter. To this
end Sala and Dickinson [23] describe objects beyond simple
shapes but still of limited complexity (cups, hats, desks)
with qualitative, parts-based shape abstraction base on a
vocabulary of 2D part models corresponding essentially to
closed contours of various shapes. Their system can extract
such representations from images containing textured objects
as well as complex backgrounds.

III. DETECTION OF NOVEL OBJECTS

Detection of unknown objects, with segmentation from
a possibly cluttered background is a notoriously difficult
problem and we thus have to make several simplifying
assumptions. We use a robot mounted camera which allows
us to at least assume the ground (or table) plane and that
objects for training initially rest on this ground plane. Fur-
thermore we restrict our search to objects belonging to simple
shape classes (cuboids and cylinders) which are detected in
generic views from edge images. Detection is based on an
incremental perceptual grouping approach and outputs 2D
projections of shape primitives. We then use the ground plane
constraint to generate 3D wireframe models.

A. Incremental Indexing and Anytimeness

Perceptual grouping is based on previous work of Zillich
and Vincze [24] which provides an anytime solution to
finding junctions between edge segments and subsequently
closed contours avoiding the need for arbitrary distance
thresholds and Richtsfeld and Vincze [25] which adds higher
level primitives such as cuboids, cylinders and cones. Index-
ing is used to efficiently identify candidates for junctions,
where the indexing space is the image itself. Each edge
endpoint defines a set of search lines consisting of tangential

and normal search lines. These search lines are drawn into
the index image using Bresenham line drawing, essentially
voting for junctions. Whenever two lines index into the same
bin, i.e. their search lines intersect, we create a new junction.
Depending on the types of search lines intersecting we form
an L-junction, a collinearity or a T-junction between the
respective originating lines. If more than two lines intersect,
the according number of pairwise junctions are created.
Shortest path search in the resulting graph consisting of edges
and junctions then finds closed contours.

In order to avoid the definition of certain length thresholds
for search lines they are drawn incrementally, continuously
checking for junctions. So the longer we search, the more
junctions and eventually closed contours will be found,
where “easy” cases typically pop out fast and “difficult”
ones (broken edges, partial occlusions, more clutter) follow
later. This allows us to stop processing any time, e. g. after
a certain frame time has elapsed or, if we happen to know
that we expect precisely three cylinders in the scene, after
having found three cylinders.

Fig. 3. Edge image, voting image with growing search lines and object
shapes after 300 ms and 450 ms processing time.

B. Perceptual Grouping

We then define a hierarchy of grouping principles to enable
efficient abstraction of image edges into basic geometric
primitives. Triggered by the incrementally growing search
lines referred to in the above section, lower level primitives
such as closures or ellipses are formed and in turn trigger
formation of higher level primitives such as cuboids and
cylinders as seen in Fig. 3. Concretely cuboids are defined as
three rectangles pairwise connected along an edge. Cylinders
are defined as two ellipses and two parallel straight lines.
Note that as we move up the abstraction hierarchy the
corresponding primitives get more and more distinctive. So
while we will generally find lots of closures, rectangles and
ellipses are already somewhat less frequent. Finally cuboids
comprised of three rectangles or cylinders being composed



of a specific topological arrangement of lines and ellipses
already rarely appear accidentally.

C. From 2D to 3D

The following tracking procedure in Section IV requires
a 3D wire-frame model of the detected object shape as well
as an initial pose estimate relative to the camera. Note that
everything so far is purely 2D, i. e. we detect projections
of shapes in generic views onto the image plane. Assuming
a camera with known elevation and tilt angle and further
assuming that detected objects (cubes, cones, cylinders and
spheres) rest on the ground, allows us to convert them to 3D
shapes. We intersect view rays with the ground plane and
thus obtain 3D position on the plane as well as unambiguous
size and fill in the unseen backsides from simple symmetry
considerations.

IV. TRACKING KNOWN OBJECTS

Tracking is based on edges and a particle filter for 6D
pose estimation. The tracker uses geometry edges (surface
discontinuities and contour edges) as well as edges resulting
from surface texture (if present) both of which are treated the
same, i. e. we make no explicit distinction between tracking
edges and tracking texture. Texture is mapped onto the
surface while tracking as part of the learning procedure.
Texture edges are generally more numerous and thus lead to
improved robustness. All time-consuming parts of the tracker
(such as matching of edge images) are implemented on a
GPU allowing tracking at frame rate. More details can be
found in Moerwald et al.[26] and Richtsfeld et al. [27].

The algorithm for tracking is illustrated in Fig. 5. It is
a modified version of the well known bootstrap filter in
Doucet et al. [28] applied to vision based object tracking.
With respect to computational costs it can be separated into
image processing and particle filtering.

A. Image Processing

In the following an object is described by the geometry of
its surface S (approximated by polygons and vertices v) and
its 6 DOF pose x = [R | t]. Furthermore with the information
of the geometry S and the initial pose xd of the object as
described in Section III the colour texture IS can be retrieved
from the camera image IC and mapped onto the surface S.

In the image processing stage shown in Fig. 4 first the edge
image of the incoming camera image is computed. This is
to be compared with the edge images of all projected object
hypotheses represented by the particles to finally weight each
particle with a matching score. Rendering each hypothesis
with its texture is fast using the GPU but edge detection on
each rendered image would take too long. On the other hand
storing thinned edge images as surface texture instead of
normal colour texture leads to bad aliasing effects for smaller
projected scales. So we forward-project the colour texture
once using a “representative” current pose (the weighed mean
of all particles), do edge detection on the rendered image and
back-project the edge image as (temporary for this frame)
surface texture. Thus rendering of the edge texture happens

Fig. 4. Block scheme of image processing. The decision whether a face
uses texture information or not depends on the viewing angle and confidence
level ck of the tracking step.

at or near the appropriate current scale and aliasing effects
are drastically reduced.

B. Particle Filtering

For each tracking step the particle filter executes the
methods shown in Fig. 5. First the particles xi

0, i = 1, . . . , N ,
each representing a different pose hypothesis of the object,
are generated using Gaussian noise. Then the confidence
level ci

k and importance weight wi
k of each particle xi

are evaluated by matching its corresponding edge image
against the edge image of the camera Ie

C . According to the
importance weights the set of particles is resampled and then
perturbed using again Gaussian noise.

The loop formed by the blocks “Importance Evaluation”
and “Resampling with Replacement” is executed several
times (2-5 times depending on the power of the processor).
We refer to this as Iterative Particle Filtering. It increases
accuracy and increases robustness especially in cases where
the object is moving fast.

First particles x̂i
k are resampled from the prior particle

distribution xi
k−1 according to the importance weights. Then

x̂i
k is perturbed by adding Gaussian noise with a standard

deviation scaled by the prior confidence level ci
k−1. Each

particle is tested against the camera image and its current
confidence level is calculated. To this end the correlation
between the gradients of the edges of the camera edge image
and the particle edge image is evaluated by comparing the
direction of the edges at each image point (u, v), producing
the edge correlation image Φi. The image Φi now contains
the degree of correlation between the pose suggested by the
particle i and the camera image. The angular deviation of
the edge angles Φi is scaled to the range of 0 to 1.



Fig. 5. Block scheme of particle filtering

The confidence level ci and importance weight wi are
evaluated as follows:

ci
k =

1
2

(
mi

ni
+

mi

nmax

)
(1)

wi
k = (ci

k)p

with

mi =
∑
u,v

Φi(u, v)

ni =
∑
u,v

|Ie
Si(u, v)|

nmax ∝ max(ni|i = 1, . . . , N)

The first term within the brackets of Eq. (1) is the percentage
of matching edge pixels mi with respect to the total visible
edge pixels ni. Calculating the confidence level only with
this term would cause the tracker to lock when only one
side of the 3D object is visible. If in this degenerate view the
object is rotated slightly, another side of the object becomes
visible. The particle representing this rotation would typically
get less weight than the prior front facing particle as the
number of matching pixels mi grows slower than the number
of non-matching pixels ni when rotating the object out of the
front side view. This effect is amplified by the fact that edge
detection for strongly tilted faces is less accurate. The second
term allocates more weight to the total number of matching
pixels mi which is intrinsically higher for the rotated particle.
nmax is the maximum number of visible edge pixels in the
actual area and scales the pixels to the proper range.

The weights of the particles are calculated by raising ci
k to

the power of p, which controls the speed of convergence of
the particles. With a higher power p, wi

k increases, which

leads to more particles assigned to xi
k when resampling

the whole particle distribution and therefore to a faster
convergence. As explained in Section IV-A for projection and
re-projection of the model, a single representative pose x̃k

is required, where we use the weighted mean of the particle
distribution.

V. LEARNING AND RECOGNISING OBJECTS

While edges are well suited for fast tracking we use highly
discriminating SIFT features for recognition (where again
we use a GPU implementation [29]). For recognition we
follow a standard approach similar to Gordon and Lowe [12]
and Collet et al. [13] but our training phase differs in that
we do not build a sparse 3D SIFT point model via bundle
adjustment but use the 3D pose and object geometry already
provided by the tracker and simply map SIFT features onto
that.

During the learning phase SIFT features are detected in
keyframes and mapped to the surface model using the known
3D pose from the tracker. SIFT features falling outside the
object boundary are discarded. Keyframes are indicated by
the user via a button press. According to Lowe’s findings
[30], that SIFT can be reliably detected up to a view point
change of about 30◦, about 6 keyframes taken from around
the object plus 2 for top and bottom are typically sufficient. A
larger number of keyframes will result in improved recogni-
tion rates for tough cases like large scale occlusions or scale
changes, but comes at the cost of increased recognition time
per object.

Fig. 6. Learning phase: Edge-based tracking (left) and learned SIFT
features (right) during learning phase

Fig. 7. Recognition phase: Re-initialised tracker (left) after SIFT based
recognition (right)

To speed up recognition SIFT features are represented
using a codebook (one per object). SIFT descriptors are



clustered using an incremental mean-shift procedure and
each 3D location on the object surface is assigned to the
according codebook entry.

In the recognition phase SIFT features are detected in the
current image and matched with the codebook. According to
the codebook entry each matched feature has several corre-
sponding 3D model locations. To robustly estimate the 6D
object pose we use the OpenCV pose estimation procedure
in a RANSAC [31] scheme with a probabilistic termination
criterion, where the number of iterations necessary to achieve
a desired detection probability is derived from an estimate
of the inlier ratio, which is taken to be the inlier ratio
of the best hypothesis so far. So the number of RANSAC
iterations is adapted to the difficulty of the current situation
and accordingly easy cases quickly converge.

To distinguish between hallucinating false detections and
correct object locations we define the object confidence

p(o |m, ft) =
ninlier

ndetected

of an object o for a given image frame ft and an object model
m as the ratio between the matched interest points ninlier

and the number of detected interest points ndetected located
within the boundary projected to the current image. This
provides a good estimate independent of the total number of
features in the model and independent of current scale.

Fig. 6 shows an example of the learning phase. On the left
we see the tracked objects with overlaid texture edges. The
right image shows the detected SIFT features of that view.
Fig. 7 shows a recognised object on the right (again with
overlaid SIFT features) and the re-initialised tracker on the
left.

VI. EXPERIMENTAL RESULTS

We present preliminary results. To evaluate our toolbox
we learned 10 object models and recognised them in dif-
ferent lighting conditions and scales. Some objects were
simple shapes (box- and cylinder-shaped packaging) that
were acquired using the basic shape detector as explained
in Section III. Others were more complex (though still of
the packaging sort) and for these we downloaded models
from Google 3D Warehouse. Furthermore we qualitatively
evaluated tracking performance in cases of severe occlusion
and scale change.

Fig. 8. Detecting a box (left) and the limits of shape detection (right) where
red indicates detected shapes and other colours lower level primitives.

Fig. 8 (left) shows a typical case of learning a box-shaped
object. Note that shape detection is able to handle moderate

amounts of background clutter, no clean white background
is required but a typical office table suffices. Also surface
texture (with the spurious edges it creates) can be handled as
long as the texture does not cross object sides, thus rendering
geometry edges all but invisible. Fig. 8 (right) shows the
limits of shape detection. The toilet roll lying sideways in
the background is detected but results in a bad model and the
black box-shaped object is lacking internal geometry edges
(only its contour is detected) due to low contrast and thus is
not detected as a cuboid.

Fig. 9. Good (left) and bad (right) examples of recognition at 0.5 m
and 1.0 m respectively, illustrating how recognition performance for some
objects degrades with object distance

Table I shows object recognition rates for two lighting
situations (sunny noon and artificial light) and two distances
of the camera from the scene (0.5 and 1.0 m) and Fig. 9
shows some typical examples. Recognition rates for each
scene were taken over 10 images of that scene. As can be
seen some objects like the green “Jasmin” tea box (in the
center) with its good texture are very stable, while others
like the “JodSalz” (yellow cylinder on the right) suffer badly
from scale change. Lighting variations did not matter much,
as is to be expected from SIFTs invariance to lighting.

TABLE I
RECOGNITION RATES IN PERCENT AND AVG. RECOGNITION TIMES PER

OBJECT FOR DIFFERENT LIGHTING SITUATIONS AND DISTANCES, OVER

10 RUNS EACH.

light noon artificial
distance [m] 0.5 1.0 0.5 1.0
Cappy 90 30 100 0
GuteLaune 100 0 100 10
HappyDay 100 70 100 90
Jasmin 100 100 100 100
JodSalz 100 0 100 40
Koala 100 100 100 100
peanuts 100 100 100 80
Digital 100 100 100 100
Visual 90 20 100 100
avg. time [s] 1.023 2.772 0.829 2.403

Note that even in cases where the recogniser’s object pose
is slightly mis-aligned the tracker, once initialised, typically
“snaps” on to the correct object pose quickly.

Fig. 10 shows qualitative results of tracking robustness. In
Fig. 10 (top) an object is occluded by the humans hand while
being moved and a stable track can be maintained. In Fig. 10
(center) one object is moved in front of the other leading to



Fig. 10. Robustness of tracking against large scale occlusion (top and
center) and large scale variation as well as background clutter (bottom).

even more severe occlusion of the latter. The tracker can
still hold on to the occluded object, though in this case it is
not moving. Generally accuracy and the maximum trackable
speed drop with increasing occlusion. Fig. 10 (bottom) shows
robustness with respect to large scale change.

TABLE II
FRAME RATE WITH RESPECT TO NUMBER OF POLYGONS OF THE

GEOMETRICAL MODEL WITH DIFFERENT NUMBER OF RECURSIONS AND

PARTICLES, COMPUTED ON A GEFORCE 285 GTX

Example Faces Frames per Second
Objects 2x50 3x100 4x300

Box 6 240 100 33
Cylinder (low) 24 220 95 30
Cylinder (mid) 96 210 90 28
Cylinder (high) 384 190 80 25
Complex Scene 1536 160 60 18

Table II shows frame rates of tracking for different models
and different number of particles per model. Tracking rate
does not depend too strongly on the number of faces in
the triangle mesh of the model and is directly related to
the number of particles. Note that tracking accuracy and
maximum trackable speed increase with number of particles.
The number of particles can be changed dynamically for each
object while tracking to e.g. maintain a given frame rate or
desired accuracy.

Fig. 1 shows a scene with 9 tracked objects, which are all
static. So a few particles per object suffice. As soon as an

object moves, a higher number of particles will be required
to maintain a stable and accurate track. Also other attentional
cues (such as a human hand approaching an object that is
likely to be moving soon) could be used to intelligently
schedule the pool of particles amongst the objects. This is
left for future research.

VII. CONCLUSION AND FUTURE WORK

We have presented a toolbox for learning, recognising and
tracking objects aimed at robotics research, concentrating
on classes of objects that are typical of grasping and fetch-
and-carry tasks, namely containers and packaging of various
sorts. The toolbox can handle textured as well as non-
textured objects and provides shape and full 6D pose in
real-time. The simplifying “blocks world” assumption was
made for the case of simple shapes (cuboids and cylinders)
which can be detected and tracked fully automatically. More
complex shapes are handled given that a 3D wireframe model
is initially available. While we do not claim to have a silver
bullet to cover all problems and scenarios we believe that
our simplifying assumptions pose no major limitations for a
large class of interesting robotics tasks, such as fetch-and-
carry, tutor-driven learning of objects or interacting with a
scene composed of unknown simple objects.

Results presented are preliminary and a more detailed
evaluation regarding model accuracy and tracking accuracy
is needed. Also a more thorough and structured evalua-
tion of recognition performance with regard to scene and
model complexity. Several improvements are planned for
the individual components. The ground plane assumption
required for creating 3D wireframe models from 2D edge
images can be removed by simply employing line-based
stereo (in cases where the robot provides stereo cameras).
The inlier ratio for the RANSAC step of the SIFT based
recogniser can be improved taking into account visibility
and discarding SIFTs with a surface normal pointing away
from the camera. Tracking already provides a fully dynamic
allocation of particles for each object and an intelligent
scheduling strategy for making best use of the pool of
available particles, possibly including additional attentional
mechanisms is a promising topic. Regarding learning, we
will replace user intervention by key press with an automatic
procedure to determine good keyframes for learning SIFTs
automatically.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the European Communitys Seventh Framework
Programme [FP7/2007-2013] under grant agreement No.
215181, CogX.

REFERENCES

[1] N. Hawes and J. Wyatt, “Engineering intelligent information-
processing systems with cast,” Advanced Engineering Infomatics,
vol. 24, no. 1, pp. 27–39, 2010.

[2] S. Winkelbach, S. Molkenstruck, and F. M. Wahl, “Low-Cost Laser
Range Scanner and Fast Surface Registration Approach,” in Proceed-
ings of the DAGM, ser. LNCS, vol. 4174, 2006, pp. 718–728.



[3] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D Model
Acquisition,” in Proc. SIGGRAPH, 2002.

[4] M. Brown, T. Drummond, and R. Cipolla, “3D Model Acquisition by
Tracking 2D Wireframes,” in Proc. British Machine Vision Conference
(BMVC), 2000.

[5] L. Vacchetti, V. Lepetit, and P. Fua, “Stable Real-Time 3D Tracking
using Online and Offline Information,” PAMI, 2004.

[6] M. Özuysal, V. Lepetit, F. Fleuret, and P. Fua, “Feature Harvesting for
Tracking-by-Detection,” in European Conference on Computer Vision,
vol. 3953, 2006, pp. 592–605.

[7] M. Özuysal, P. Fua, and V. Lepetit, “Fast Keypoint Recognition in Ten
Lines of Code,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2007, pp. 1–8.

[8] M. Grabner, H. Grabner, and H. Bischof, “Learning Features for
Tracking / Tracking via Discriminative Online Learning of Local
Features,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’07), 2007.

[9] P. M. Roth, M. Donoser, and H. Bischof, “On-line Learning of
Unknown Hand Held Objects via Tracking,” in Proc. 2nd International
Cognitive Vision Workshop (ICVS), Graz, Austria, 2006.

[10] H. Riemenschneider, M. Donoser, and H. Bischof, “Robust Online
Object Learning and Recognition by MSER Tracking,” in Proc. 13th
Computer Vision Winter Workshop (CVWW), 2007.

[11] P. Qi, G. Reitmayr, and T. Drummond, “ProFORMA: Probabilistic
Feature-based On-line Rapid Model Acquisition,” in Proc. British
Machine Vision Conference (BMVC), 2009.

[12] I. Gordon and D. G. Lowe, “What and where: 3D object recognition
with accurate pose,” in Toward Category-Level Object Recognition,
J. Ponce, M. Hebert, Schmid. C., and A. Zisserman, Eds. Springer,
2006, ch. What and where: 3D object recognition with accurate pose,
pp. 67–82.

[13] A. Collet, D. Berenson, S. S. Srinivasa, and D. Ferguson, “Object
recognition and full pose registration from a single image for robotic
manipulation,” in ICRA’09: Proceedings of the 2009 IEEE interna-
tional conference on Robotics and Automation. Piscataway, NJ, USA:
IEEE Press, 2009, pp. 3534–3541.

[14] V. Lepetit and P. Fua, “Monocular Model-Based 3D Tracking of Rigid
Objects: A Survey,” Foundationas and Trends in Computer Graphics
and Vision, vol. 1, no. 1, pp. 1–89, 2005.

[15] L. Masson, M. Dhome, and F. Jurie, “Robust Real Time Tracking of
3D Objects,” in Proc. of the 17th International Conference on Pattern
Recognition (ICPR), vol. 4, 2004.

[16] E. Rosten and T. Drummond, “Fusing Points and Lines for High Per-
formance Tracking.” in IEEE International Conference on Computer
Vision, vol. 2, 2005, pp. 1508–1511.

[17] G. Klein and D. Murray, “Full-3D Edge Tacking with a Particle Filter,”
in Proc. British Machine Vision Conference (BMVC), vol. 3, Sept.
2006, pp. 1119–1128.

[18] E. Murphy-Chutorian and M. Trivedi, “Particle Filtering with Ren-
dered Models: A Two Pass Approach to Multi-Object 3D Tracking
with the GPU,” in Computer Vision on GPU Workshop (CVGPU),
2008, pp. 1–8.

[19] R. C. Nelson and A. Selinger, “A cubist approach to
object recognition,” Dept. of Computer Science, Univ. of
Rochester, Tech. Rep. TR689, 1998. [Online]. Available:
citeseer.nj.nec.com/article/nelson98cubist.html

[20] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, “Groups of adjacent
contour segments for object detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 30, no. 1, pp. 36–51, 2008.

[21] B. Ommer and J. Malik, “Multi-Scale Object Detection by Clustering
Lines,” in International Conference on Computer Vision, 2009.

[22] S. J. Dickinson and D. Metaxas, “Integrating Qualitative and Quan-
titative Object Representations in the Recovery and Tracking of 3-D
Shape,” in Computational and Psychophysical Mechanisms of Visual
Coding, L. Harris and M. Jenkin, Eds. Cambridge University Press,
New York, 1997, pp. 221–248.

[23] P. Sala and S. Dickinson, “Model-Based Perceptual Grouping and
Shape Abstraction,” in The Sixth IEEE Computer Society Workshop
on Perceptual Grouping in Computer Vision (POCV 2008), 2008.

[24] M. Zillich and M. Vincze, “Anytimeness Avoids Parameters in Detect-
ing Closed Convex Polygons,” in The Sixth IEEE Computer Society
Workshop on Perceptual Grouping in Computer Vision (POCV 2008),
2008.

[25] A. Richtsfeld and M. Vincze, “Basic Object Shape Detection and

Tracking using Perceptual Organization,” in International Conference
on Advanced Robotics (ICAR), June 2009, pp. 1–6.

[26] T. Mörwald, M. Zillich, and M. Vincze, “Edge Tracking of Textured
Objects with a Recursive Particle Filter,” in 19th International Confer-
ence on Computer Graphics and Vision (Graphicon), Moscow, 2009,
pp. 96–103.

[27] A. Richtsfeld, T. Mörwald, M. Zillich, and M. Vincze, “Taking in
Shape: Detection and Tracking of Basic 3D Shapes in a Robotics
Context,” in Computer Vision Winder Workshop (CVWW), 2010, pp.
91–98.

[28] A. Doucet, N. De Freitas, and N. Gordon, Eds., Sequential Monte
Carlo Methods in Practice. Springer, 2001.

[29] C. Wu, “http://www.cs.unc.edu/ ccwu/siftgpu/.”
[30] D. G. Lowe, “Distinctive image features from scale-invariant key-

points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, 2004.

[31] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography,” Comm. of the ACM, vol. 24, pp. 381–395,
1981.


